Bhavya Mehta, V. Kharche, Sandeep S. Udmale
{"title":"Accelerating the Search for Stable Full Heusler Compounds through Machine Learning","authors":"Bhavya Mehta, V. Kharche, Sandeep S. Udmale","doi":"10.1109/IRI58017.2023.00034","DOIUrl":null,"url":null,"abstract":"Applications for Heusler compounds are expanding in topological insulators, magnetocaloric, spintronics, and superconductivity areas. These substances are expanding the boundaries of science and offering answers to engineering problems. Our work demonstrates a discovery engine that can predict the crystal structures and chemical characteristics of 1107 Full Heusler compounds by implementing a Machine Learning approach trained with elemental descriptor data. Our approach is 50 times faster than rule-based and diffraction techniques, with a true positive rate of 0.99 for every random combination of elements on more than 1,000,000 candidates. We also compute the formation energies of these novel compounds to filter out 144 highly stable Heuslers that coincide with existing research and density functional theory trends to validate and support our findings.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Heusler化合物在拓扑绝缘体、磁热学、自旋电子学和超导领域的应用正在扩大。这些物质正在扩展科学的边界,并为工程问题提供答案。我们的工作展示了一个发现引擎,可以通过实现使用元素描述符数据训练的机器学习方法来预测1107种Full Heusler化合物的晶体结构和化学特性。我们的方法比基于规则和衍射技术快50倍,在超过1,000,000个候选元素的每个随机组合中,真阳性率为0.99。我们还计算了这些新化合物的形成能,以过滤出144个高度稳定的Heuslers,这些Heuslers与现有的研究和密度泛函理论趋势相吻合,以验证和支持我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating the Search for Stable Full Heusler Compounds through Machine Learning
Applications for Heusler compounds are expanding in topological insulators, magnetocaloric, spintronics, and superconductivity areas. These substances are expanding the boundaries of science and offering answers to engineering problems. Our work demonstrates a discovery engine that can predict the crystal structures and chemical characteristics of 1107 Full Heusler compounds by implementing a Machine Learning approach trained with elemental descriptor data. Our approach is 50 times faster than rule-based and diffraction techniques, with a true positive rate of 0.99 for every random combination of elements on more than 1,000,000 candidates. We also compute the formation energies of these novel compounds to filter out 144 highly stable Heuslers that coincide with existing research and density functional theory trends to validate and support our findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信