基于机器学习的混合PV-T集热器建模与控制

Z. Abdin, A. Rachid
{"title":"基于机器学习的混合PV-T集热器建模与控制","authors":"Z. Abdin, A. Rachid","doi":"10.1109/MED59994.2023.10185721","DOIUrl":null,"url":null,"abstract":"Photovoltaic-thermal (PV-T) systems are expected to fulfil an increasingly vital role in future energy production. The current research endeavors to showcase machine learning modeling and control of a water-based PV-T collector. In this work, the PV-T collector is modeled using a decision tree algorithm and artificial neural network (ANN). The predicted outputs are compared with the actual outputs to validate the models. The ANN-based model performed better and proved its efficacy in training and testing. Further, various control strategies are implemented and their performance is compared. All the techniques presented are illustrated through simulation results.","PeriodicalId":270226,"journal":{"name":"2023 31st Mediterranean Conference on Control and Automation (MED)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and control of a hybrid PV-T collector using machine learning\",\"authors\":\"Z. Abdin, A. Rachid\",\"doi\":\"10.1109/MED59994.2023.10185721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photovoltaic-thermal (PV-T) systems are expected to fulfil an increasingly vital role in future energy production. The current research endeavors to showcase machine learning modeling and control of a water-based PV-T collector. In this work, the PV-T collector is modeled using a decision tree algorithm and artificial neural network (ANN). The predicted outputs are compared with the actual outputs to validate the models. The ANN-based model performed better and proved its efficacy in training and testing. Further, various control strategies are implemented and their performance is compared. All the techniques presented are illustrated through simulation results.\",\"PeriodicalId\":270226,\"journal\":{\"name\":\"2023 31st Mediterranean Conference on Control and Automation (MED)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 31st Mediterranean Conference on Control and Automation (MED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED59994.2023.10185721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Mediterranean Conference on Control and Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED59994.2023.10185721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光电-热(PV-T)系统有望在未来的能源生产中发挥越来越重要的作用。目前的研究努力展示水基PV-T收集器的机器学习建模和控制。在这项工作中,使用决策树算法和人工神经网络(ANN)对PV-T收集器进行建模。将预测输出与实际输出进行比较,以验证模型的正确性。基于人工神经网络的模型在训练和测试中表现较好,证明了其有效性。此外,还实现了各种控制策略,并对其性能进行了比较。通过仿真结果说明了所提出的所有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and control of a hybrid PV-T collector using machine learning
Photovoltaic-thermal (PV-T) systems are expected to fulfil an increasingly vital role in future energy production. The current research endeavors to showcase machine learning modeling and control of a water-based PV-T collector. In this work, the PV-T collector is modeled using a decision tree algorithm and artificial neural network (ANN). The predicted outputs are compared with the actual outputs to validate the models. The ANN-based model performed better and proved its efficacy in training and testing. Further, various control strategies are implemented and their performance is compared. All the techniques presented are illustrated through simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信