舒尔多项式的生成函数

L. Bedratyuk
{"title":"舒尔多项式的生成函数","authors":"L. Bedratyuk","doi":"10.31861/bmj2022.01.04","DOIUrl":null,"url":null,"abstract":"For the generating function $$\nG_n(\\mathbi{x},\\mathbi{t})=\\sum_{\\lambda} \\mathbi{s}_{\\lambda}(x_1,x_2,\\ldots, x_n) t_1^{\\lambda_1 } t_2^{\\lambda_2 } \\cdots t_n^{\\lambda_n},\n$$ where the Sсhur polynomials $\\mathbi{s}_{\\lambda}(x_1,x_2,\\ldots, x_n) $ are indexed by partitions $ \\lambda $ of length no more than $ n $ the explicit form for $ n = 2,3 $ is calculated and a recurrent relation for an arbitrary $ n $ is found. It is proved that $ G_n (\\mathbi {x}, \\mathbi {t}) $ is a rational function\n$$G_n(\\boldsymbol{x}, \\boldsymbol{t})=\\frac{P(\\boldsymbol{x}, \\boldsymbol{t})}{Q(\\boldsymbol{x}, \\boldsymbol{t})},$$\nthe numerator and denominator of which belong to the kernel of the differential operator\n$$\n\\mathcal{D}_n=\\sum_{i=1}^n x_i \\frac{\\partial}{\\partial x_i}- \\sum_{i=1}^n t_i \\frac{\\partial}{\\partial t_i}.\n$$\nFor the numerator $ P (\\boldsymbol {x}, \\boldsymbol {t}) $ we find its specialization at $ t_1 = t_2 = \\cdots = t_n = 1. $","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GENERATING FUNCTION FOR SCHUR POLYNOMIALS\",\"authors\":\"L. Bedratyuk\",\"doi\":\"10.31861/bmj2022.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the generating function $$\\nG_n(\\\\mathbi{x},\\\\mathbi{t})=\\\\sum_{\\\\lambda} \\\\mathbi{s}_{\\\\lambda}(x_1,x_2,\\\\ldots, x_n) t_1^{\\\\lambda_1 } t_2^{\\\\lambda_2 } \\\\cdots t_n^{\\\\lambda_n},\\n$$ where the Sсhur polynomials $\\\\mathbi{s}_{\\\\lambda}(x_1,x_2,\\\\ldots, x_n) $ are indexed by partitions $ \\\\lambda $ of length no more than $ n $ the explicit form for $ n = 2,3 $ is calculated and a recurrent relation for an arbitrary $ n $ is found. It is proved that $ G_n (\\\\mathbi {x}, \\\\mathbi {t}) $ is a rational function\\n$$G_n(\\\\boldsymbol{x}, \\\\boldsymbol{t})=\\\\frac{P(\\\\boldsymbol{x}, \\\\boldsymbol{t})}{Q(\\\\boldsymbol{x}, \\\\boldsymbol{t})},$$\\nthe numerator and denominator of which belong to the kernel of the differential operator\\n$$\\n\\\\mathcal{D}_n=\\\\sum_{i=1}^n x_i \\\\frac{\\\\partial}{\\\\partial x_i}- \\\\sum_{i=1}^n t_i \\\\frac{\\\\partial}{\\\\partial t_i}.\\n$$\\nFor the numerator $ P (\\\\boldsymbol {x}, \\\\boldsymbol {t}) $ we find its specialization at $ t_1 = t_2 = \\\\cdots = t_n = 1. $\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2022.01.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于生成函数$$G_n(\mathbi{x},\mathbi{t})=\sum_{\lambda} \mathbi{s}_{\lambda}(x_1,x_2,\ldots, x_n) t_1^{\lambda_1 } t_2^{\lambda_2 } \cdots t_n^{\lambda_n},$$,其中ssrhur多项式$\mathbi{s}_{\lambda}(x_1,x_2,\ldots, x_n) $由长度不超过$ n $的分区$ \lambda $索引,计算了$ n = 2,3 $的显式形式,并找到了任意$ n $的递归关系。证明了$ G_n (\mathbi {x}, \mathbi {t}) $是一个有理函数$$G_n(\boldsymbol{x}, \boldsymbol{t})=\frac{P(\boldsymbol{x}, \boldsymbol{t})}{Q(\boldsymbol{x}, \boldsymbol{t})},$$其分子和分母属于微分算子的核$$\mathcal{D}_n=\sum_{i=1}^n x_i \frac{\partial}{\partial x_i}- \sum_{i=1}^n t_i \frac{\partial}{\partial t_i}.$$对于分子$ P (\boldsymbol {x}, \boldsymbol {t}) $我们发现它的特化在 $ t_1 = t_2 = \cdots = t_n = 1. $
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GENERATING FUNCTION FOR SCHUR POLYNOMIALS
For the generating function $$ G_n(\mathbi{x},\mathbi{t})=\sum_{\lambda} \mathbi{s}_{\lambda}(x_1,x_2,\ldots, x_n) t_1^{\lambda_1 } t_2^{\lambda_2 } \cdots t_n^{\lambda_n}, $$ where the Sсhur polynomials $\mathbi{s}_{\lambda}(x_1,x_2,\ldots, x_n) $ are indexed by partitions $ \lambda $ of length no more than $ n $ the explicit form for $ n = 2,3 $ is calculated and a recurrent relation for an arbitrary $ n $ is found. It is proved that $ G_n (\mathbi {x}, \mathbi {t}) $ is a rational function $$G_n(\boldsymbol{x}, \boldsymbol{t})=\frac{P(\boldsymbol{x}, \boldsymbol{t})}{Q(\boldsymbol{x}, \boldsymbol{t})},$$ the numerator and denominator of which belong to the kernel of the differential operator $$ \mathcal{D}_n=\sum_{i=1}^n x_i \frac{\partial}{\partial x_i}- \sum_{i=1}^n t_i \frac{\partial}{\partial t_i}. $$ For the numerator $ P (\boldsymbol {x}, \boldsymbol {t}) $ we find its specialization at $ t_1 = t_2 = \cdots = t_n = 1. $
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信