基于born规则的小分量分析概率模型

M. Jankovic, M. Manic, B. D. Relijn
{"title":"基于born规则的小分量分析概率模型","authors":"M. Jankovic, M. Manic, B. D. Relijn","doi":"10.1109/NEUREL.2012.6419971","DOIUrl":null,"url":null,"abstract":"Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.","PeriodicalId":343718,"journal":{"name":"11th Symposium on Neural Network Applications in Electrical Engineering","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Probabilistic model for minor component analysis based on born rule\",\"authors\":\"M. Jankovic, M. Manic, B. D. Relijn\",\"doi\":\"10.1109/NEUREL.2012.6419971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.\",\"PeriodicalId\":343718,\"journal\":{\"name\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"11th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2012.6419971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"11th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2012.6419971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

小分量分析(MCA)是一种常用的数据分析和处理技术,例如压缩或聚类。本文提出了一种基于玻恩规则的概率MCA模型。在离线实现中,它可以看作是一个连续的优化问题。在在线实现中,通过引入两种不同的时间尺度来解决这个问题。结果表明,最近提出的面向时间的分层方法可以作为在线实现所提出算法的概念。提出的模型为创建不同的MCA实现/算法提供了一般框架。特定的实现可以优化计算的局部性、收敛速度、精度或其他一些感兴趣的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic model for minor component analysis based on born rule
Minor component analysis (MCA) is commonly applied technique for data analysis and processing, e.g. compression or clustering. In this paper we propose a probabilistic MCA model based on the Born rule. In off-line realization it can be seen as a successive optimization problem. In the on-line realization it will be solved by introduction of two different time scales. It will be shown that recently proposed time oriented hierarchical method, can be used as a concept for on-line realization of the proposed algorithms. The proposed model gives general framework for creating different MCA realizations/algorithms. A particular realization can optimize locality of calculation, convergence speed, preciseness or some other parameter of interest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信