基于神经网络的自动驾驶汽车滑模横向控制

Lhoussain El Hajjami, E. Mellouli, M. Berrada
{"title":"基于神经网络的自动驾驶汽车滑模横向控制","authors":"Lhoussain El Hajjami, E. Mellouli, M. Berrada","doi":"10.1109/IRASET48871.2020.9092055","DOIUrl":null,"url":null,"abstract":"Nowadays, autonomous driving represents a major challenge for automobile manufacturers in order to reach the latest levels of autonomy. Any autonomous vehicle development project focuses on three fundamental phases; environmental perception, trajectory planning and path pursuit which including control and command as an integral part. This paper presents a modified Sliding Mode Controller based on the Radial Basic Function Neural Networks (SMC_RBNN) able to control the lateral dynamics of the vehicle. For a sinusoidal reference path, the proposed control strategy, SMC_RBNN, showed better results than those obtained with a conventional Sliding Mode Controller (SMC), in terms of lateral tracking error.","PeriodicalId":271840,"journal":{"name":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Neural Network Based Sliding Mode Lateral Control For Autonomous Vehicle\",\"authors\":\"Lhoussain El Hajjami, E. Mellouli, M. Berrada\",\"doi\":\"10.1109/IRASET48871.2020.9092055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, autonomous driving represents a major challenge for automobile manufacturers in order to reach the latest levels of autonomy. Any autonomous vehicle development project focuses on three fundamental phases; environmental perception, trajectory planning and path pursuit which including control and command as an integral part. This paper presents a modified Sliding Mode Controller based on the Radial Basic Function Neural Networks (SMC_RBNN) able to control the lateral dynamics of the vehicle. For a sinusoidal reference path, the proposed control strategy, SMC_RBNN, showed better results than those obtained with a conventional Sliding Mode Controller (SMC), in terms of lateral tracking error.\",\"PeriodicalId\":271840,\"journal\":{\"name\":\"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRASET48871.2020.9092055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 1st International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRASET48871.2020.9092055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

如今,为了达到最新的自动驾驶水平,自动驾驶对汽车制造商来说是一个重大挑战。任何自动驾驶汽车开发项目都关注三个基本阶段;环境感知、轨迹规划和路径追求,其中包括控制和指挥。提出了一种基于径向基函数神经网络(SMC_RBNN)的改进型滑模控制器,用于控制车辆的横向动力学。对于正弦参考路径,SMC_RBNN控制策略在横向跟踪误差方面优于传统滑模控制器(SMC)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Based Sliding Mode Lateral Control For Autonomous Vehicle
Nowadays, autonomous driving represents a major challenge for automobile manufacturers in order to reach the latest levels of autonomy. Any autonomous vehicle development project focuses on three fundamental phases; environmental perception, trajectory planning and path pursuit which including control and command as an integral part. This paper presents a modified Sliding Mode Controller based on the Radial Basic Function Neural Networks (SMC_RBNN) able to control the lateral dynamics of the vehicle. For a sinusoidal reference path, the proposed control strategy, SMC_RBNN, showed better results than those obtained with a conventional Sliding Mode Controller (SMC), in terms of lateral tracking error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信