探索自动简答评分的独特功能

L. Galhardi, H. C. M. Senefonte, Rodrigo Souza, J. Brancher
{"title":"探索自动简答评分的独特功能","authors":"L. Galhardi, H. C. M. Senefonte, Rodrigo Souza, J. Brancher","doi":"10.5753/ENIAC.2018.4399","DOIUrl":null,"url":null,"abstract":"Automatic short answer grading is the study field that addresses the assessment of students’ answers to questions in natural language. The grading of the answers is generally seen as a typical classification supervised learning. To stimulate research in the field, two datasets were publicly released in the SemEval 2013 competition task “Student Response Analysis”. Since then, some works have been developed to improve the results. In this context, the goal of this work is to tackle such task by implementing lessons learned from the literature in an effective way and report results for both datasets and all of its scenarios. The proposed method obtained better results in most scenarios of the competition task and, therefore, higher overall scores when compared to recent works.","PeriodicalId":152292,"journal":{"name":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","volume":"62 7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Exploring Distinct Features for Automatic Short Answer Grading\",\"authors\":\"L. Galhardi, H. C. M. Senefonte, Rodrigo Souza, J. Brancher\",\"doi\":\"10.5753/ENIAC.2018.4399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic short answer grading is the study field that addresses the assessment of students’ answers to questions in natural language. The grading of the answers is generally seen as a typical classification supervised learning. To stimulate research in the field, two datasets were publicly released in the SemEval 2013 competition task “Student Response Analysis”. Since then, some works have been developed to improve the results. In this context, the goal of this work is to tackle such task by implementing lessons learned from the literature in an effective way and report results for both datasets and all of its scenarios. The proposed method obtained better results in most scenarios of the competition task and, therefore, higher overall scores when compared to recent works.\",\"PeriodicalId\":152292,\"journal\":{\"name\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"volume\":\"62 7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/ENIAC.2018.4399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XV Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/ENIAC.2018.4399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自动简答评分是对学生用自然语言回答问题进行评估的研究领域。对答案的评分通常被视为一种典型的分类监督学习。为了刺激该领域的研究,SemEval 2013竞赛任务“学生反应分析”中公开发布了两个数据集。从那时起,已经开展了一些工作来改善结果。在这种情况下,本工作的目标是以有效的方式实施从文献中吸取的经验教训,并报告数据集及其所有场景的结果,从而解决这一任务。本文提出的方法在大多数竞赛任务的场景中获得了更好的结果,因此与最近的作品相比,总体得分更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Distinct Features for Automatic Short Answer Grading
Automatic short answer grading is the study field that addresses the assessment of students’ answers to questions in natural language. The grading of the answers is generally seen as a typical classification supervised learning. To stimulate research in the field, two datasets were publicly released in the SemEval 2013 competition task “Student Response Analysis”. Since then, some works have been developed to improve the results. In this context, the goal of this work is to tackle such task by implementing lessons learned from the literature in an effective way and report results for both datasets and all of its scenarios. The proposed method obtained better results in most scenarios of the competition task and, therefore, higher overall scores when compared to recent works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信