{"title":"解决冷启动问题和缓解推荐系统的稀疏性问题","authors":"Hao Wang","doi":"10.48550/arXiv.2206.00151","DOIUrl":null,"url":null,"abstract":"Cold-start and sparsity problem are two key intrinsic problems to recommender systems. During the past two decades, researchers and industrial practitioners have spent considerable amount of efforts trying to solve the problems. However, for cold-start problem, most research relies on importing side information to transfer knowledge. A notable exception is ZeroMat, which uses no extra input data. Sparsity is a lesser noticed problem. In this paper, we propose a new algorithm named DotMat that relies on no extra input data, but is capable of solving cold-start and sparsity problems. In experiments, we prove that like ZeroMat, DotMat can achieve competitive results with recommender systems with full data, such as the classic matrix factorization algorithm.","PeriodicalId":166358,"journal":{"name":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"DotMat: Solving Cold-Start Problem and Alleviating Sparsity Problem for Recommender Systems\",\"authors\":\"Hao Wang\",\"doi\":\"10.48550/arXiv.2206.00151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cold-start and sparsity problem are two key intrinsic problems to recommender systems. During the past two decades, researchers and industrial practitioners have spent considerable amount of efforts trying to solve the problems. However, for cold-start problem, most research relies on importing side information to transfer knowledge. A notable exception is ZeroMat, which uses no extra input data. Sparsity is a lesser noticed problem. In this paper, we propose a new algorithm named DotMat that relies on no extra input data, but is capable of solving cold-start and sparsity problems. In experiments, we prove that like ZeroMat, DotMat can achieve competitive results with recommender systems with full data, such as the classic matrix factorization algorithm.\",\"PeriodicalId\":166358,\"journal\":{\"name\":\"2022 IEEE 5th International Conference on Electronics Technology (ICET)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 5th International Conference on Electronics Technology (ICET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.00151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronics Technology (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DotMat: Solving Cold-Start Problem and Alleviating Sparsity Problem for Recommender Systems
Cold-start and sparsity problem are two key intrinsic problems to recommender systems. During the past two decades, researchers and industrial practitioners have spent considerable amount of efforts trying to solve the problems. However, for cold-start problem, most research relies on importing side information to transfer knowledge. A notable exception is ZeroMat, which uses no extra input data. Sparsity is a lesser noticed problem. In this paper, we propose a new algorithm named DotMat that relies on no extra input data, but is capable of solving cold-start and sparsity problems. In experiments, we prove that like ZeroMat, DotMat can achieve competitive results with recommender systems with full data, such as the classic matrix factorization algorithm.