GPU任务调度的深度q -学习方法

R. Luley, Qinru Qiu
{"title":"GPU任务调度的深度q -学习方法","authors":"R. Luley, Qinru Qiu","doi":"10.1109/HPEC43674.2020.9286238","DOIUrl":null,"url":null,"abstract":"Efficient utilization of resources is critical to system performance and effectiveness for high performance computing systems. In a graphics processing unit (GPU) -based system, one method for enabling higher utilization is concurrent kernel execution - allowing multiple independent kernels to simultaneously execute on the GPU. However, resource contention due to the manner in which kernel tasks are scheduled may still lead to suboptimal task performance and utilization. In this work, we present a deep Q-learning approach to identify an ordering for a given set of tasks which achieves near-optimal average task performance and high resource utilization. Our solution outperforms other similar approaches and has additional benefit of being adaptable to dynamic task characteristics or GPU resource configurations.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Deep Q-Learning Approach for GPU Task Scheduling\",\"authors\":\"R. Luley, Qinru Qiu\",\"doi\":\"10.1109/HPEC43674.2020.9286238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient utilization of resources is critical to system performance and effectiveness for high performance computing systems. In a graphics processing unit (GPU) -based system, one method for enabling higher utilization is concurrent kernel execution - allowing multiple independent kernels to simultaneously execute on the GPU. However, resource contention due to the manner in which kernel tasks are scheduled may still lead to suboptimal task performance and utilization. In this work, we present a deep Q-learning approach to identify an ordering for a given set of tasks which achieves near-optimal average task performance and high resource utilization. Our solution outperforms other similar approaches and has additional benefit of being adaptable to dynamic task characteristics or GPU resource configurations.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

对于高性能计算系统来说,资源的有效利用对系统性能和效率至关重要。在基于图形处理单元(GPU)的系统中,实现更高利用率的一种方法是并发内核执行——允许多个独立内核同时在GPU上执行。然而,由于调度内核任务的方式而引起的资源争用可能仍然会导致任务性能和利用率不理想。在这项工作中,我们提出了一种深度q -学习方法来确定给定任务集的顺序,从而实现接近最佳的平均任务性能和高资源利用率。我们的解决方案优于其他类似的方法,并且具有适应动态任务特征或GPU资源配置的额外好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Deep Q-Learning Approach for GPU Task Scheduling
Efficient utilization of resources is critical to system performance and effectiveness for high performance computing systems. In a graphics processing unit (GPU) -based system, one method for enabling higher utilization is concurrent kernel execution - allowing multiple independent kernels to simultaneously execute on the GPU. However, resource contention due to the manner in which kernel tasks are scheduled may still lead to suboptimal task performance and utilization. In this work, we present a deep Q-learning approach to identify an ordering for a given set of tasks which achieves near-optimal average task performance and high resource utilization. Our solution outperforms other similar approaches and has additional benefit of being adaptable to dynamic task characteristics or GPU resource configurations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信