{"title":"粒子群优化(PSO)在支持向量机(SVM)参数自动选择中的应用,用于预测蒂米卡阿玛玛帕雷理工学院学生的毕业情况","authors":"Sepriadi - Bumbungan, Kusrini, Kusnawi","doi":"10.55334/jtam.v4i1.77","DOIUrl":null,"url":null,"abstract":"Ketepatan waktu kelulusan mahasiswa, memiliki pengaruh terhadap kualitas Perguruan Tinggi karena merupakan salah satu indikator penilaian dalam proses akreditasi Perguruan Tinggi, sehingga memprediksi kelulusan mahasiswa dianggap penting untuk dilakukan. Prediksi kelulusan dapat dilakukan dengan menggunakan teknik data mining. Salah satunya dengan Support Vector Machine (SVM) yang memiliki performa yang baik dalam melakukan klasifikasi, karena dapat menyelesaikan masalah overfitting, data training yang sedikit, dan lambatnya konvergensi. Namun, Support Vector Machine (SVM) masih memiliki kekurangan, dalam hal komputasi data dengan jumlah yang besar dan dalam pemilihan parameter secara optimal. Untuk hal itu, diperlukan algoritma Particle Swarm Optimization (PSO) dalam pemilihan parameter yang sesuai pada metode Support Vector Machine (SVM). Eksperimen pada metode Support Vector Machine (SVM) dan Particle Swarm Optimization (PSO) dilakukan dengan optimasi parameter Gamma, C, dan Epsilon. Software yang digunakan untuk mendapatkan hasil eksperimen yaitu RapidMiner 9.10. Hasil eksperimen dengan menggunakan algoritma Support Vector Machine (SVM) menghasilkan nilai accuracy, recall, precision, dan F1 score masing-masing dengan nilai 93,33%, 91,04%, 98,39%, dan 94,57%. Sementara itu, Optimasi algoritma Support Vector Machine (SVM) dengan menggunakan Particle Swarm Optimization (PSO) menghasilkan nilai accuracy, recall, precision, dan F1 score masing-masing dengan nilai 98,02%, 98,55%, 98,08%, dan 98,31%. Berdasarkan hasil eksperimen yang telah dilakukan, dinyatakan terbukti bahwa penerapan algorima Particle Swarm Optimization (PSO) dapat meningkatkan kinerja dari algoritma Support Vector Machine (SVM). \n \n ","PeriodicalId":351047,"journal":{"name":"Jurnal Teknik AMATA","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Parameter Secara Otomatis pada Support Vector Machine (SVM) untuk Prediksi Kelulusan Mahasiswa Politeknik Amamapare Timika\",\"authors\":\"Sepriadi - Bumbungan, Kusrini, Kusnawi\",\"doi\":\"10.55334/jtam.v4i1.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ketepatan waktu kelulusan mahasiswa, memiliki pengaruh terhadap kualitas Perguruan Tinggi karena merupakan salah satu indikator penilaian dalam proses akreditasi Perguruan Tinggi, sehingga memprediksi kelulusan mahasiswa dianggap penting untuk dilakukan. Prediksi kelulusan dapat dilakukan dengan menggunakan teknik data mining. Salah satunya dengan Support Vector Machine (SVM) yang memiliki performa yang baik dalam melakukan klasifikasi, karena dapat menyelesaikan masalah overfitting, data training yang sedikit, dan lambatnya konvergensi. Namun, Support Vector Machine (SVM) masih memiliki kekurangan, dalam hal komputasi data dengan jumlah yang besar dan dalam pemilihan parameter secara optimal. Untuk hal itu, diperlukan algoritma Particle Swarm Optimization (PSO) dalam pemilihan parameter yang sesuai pada metode Support Vector Machine (SVM). Eksperimen pada metode Support Vector Machine (SVM) dan Particle Swarm Optimization (PSO) dilakukan dengan optimasi parameter Gamma, C, dan Epsilon. Software yang digunakan untuk mendapatkan hasil eksperimen yaitu RapidMiner 9.10. Hasil eksperimen dengan menggunakan algoritma Support Vector Machine (SVM) menghasilkan nilai accuracy, recall, precision, dan F1 score masing-masing dengan nilai 93,33%, 91,04%, 98,39%, dan 94,57%. Sementara itu, Optimasi algoritma Support Vector Machine (SVM) dengan menggunakan Particle Swarm Optimization (PSO) menghasilkan nilai accuracy, recall, precision, dan F1 score masing-masing dengan nilai 98,02%, 98,55%, 98,08%, dan 98,31%. Berdasarkan hasil eksperimen yang telah dilakukan, dinyatakan terbukti bahwa penerapan algorima Particle Swarm Optimization (PSO) dapat meningkatkan kinerja dari algoritma Support Vector Machine (SVM). \\n \\n \",\"PeriodicalId\":351047,\"journal\":{\"name\":\"Jurnal Teknik AMATA\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknik AMATA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.55334/jtam.v4i1.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknik AMATA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55334/jtam.v4i1.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Penerapan Particle Swarm Optimization (PSO) dalam Pemilihan Parameter Secara Otomatis pada Support Vector Machine (SVM) untuk Prediksi Kelulusan Mahasiswa Politeknik Amamapare Timika
Ketepatan waktu kelulusan mahasiswa, memiliki pengaruh terhadap kualitas Perguruan Tinggi karena merupakan salah satu indikator penilaian dalam proses akreditasi Perguruan Tinggi, sehingga memprediksi kelulusan mahasiswa dianggap penting untuk dilakukan. Prediksi kelulusan dapat dilakukan dengan menggunakan teknik data mining. Salah satunya dengan Support Vector Machine (SVM) yang memiliki performa yang baik dalam melakukan klasifikasi, karena dapat menyelesaikan masalah overfitting, data training yang sedikit, dan lambatnya konvergensi. Namun, Support Vector Machine (SVM) masih memiliki kekurangan, dalam hal komputasi data dengan jumlah yang besar dan dalam pemilihan parameter secara optimal. Untuk hal itu, diperlukan algoritma Particle Swarm Optimization (PSO) dalam pemilihan parameter yang sesuai pada metode Support Vector Machine (SVM). Eksperimen pada metode Support Vector Machine (SVM) dan Particle Swarm Optimization (PSO) dilakukan dengan optimasi parameter Gamma, C, dan Epsilon. Software yang digunakan untuk mendapatkan hasil eksperimen yaitu RapidMiner 9.10. Hasil eksperimen dengan menggunakan algoritma Support Vector Machine (SVM) menghasilkan nilai accuracy, recall, precision, dan F1 score masing-masing dengan nilai 93,33%, 91,04%, 98,39%, dan 94,57%. Sementara itu, Optimasi algoritma Support Vector Machine (SVM) dengan menggunakan Particle Swarm Optimization (PSO) menghasilkan nilai accuracy, recall, precision, dan F1 score masing-masing dengan nilai 98,02%, 98,55%, 98,08%, dan 98,31%. Berdasarkan hasil eksperimen yang telah dilakukan, dinyatakan terbukti bahwa penerapan algorima Particle Swarm Optimization (PSO) dapat meningkatkan kinerja dari algoritma Support Vector Machine (SVM).