时变多尺度系数波动方程的数值上尺度

B. Maier, B. Verfürth
{"title":"时变多尺度系数波动方程的数值上尺度","authors":"B. Maier, B. Verfürth","doi":"10.5445/IR/1000136031","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the classical wave equation with time-dependent, spatially multiscale coefficients. We propose a fully discrete computational multiscale method in the spirit of the localized orthogonal decomposition in space with a backward Euler scheme in time. We show optimal convergence rates in space and time beyond the assumptions of spatial periodicity or scale separation of the coefficients. Further, we propose an adaptive update strategy for the time-dependent multiscale basis. Numerical experiments illustrate the theoretical results and showcase the practicability of the adaptive update strategy.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical upscaling for wave equations with time-dependent multiscale coefficients\",\"authors\":\"B. Maier, B. Verfürth\",\"doi\":\"10.5445/IR/1000136031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the classical wave equation with time-dependent, spatially multiscale coefficients. We propose a fully discrete computational multiscale method in the spirit of the localized orthogonal decomposition in space with a backward Euler scheme in time. We show optimal convergence rates in space and time beyond the assumptions of spatial periodicity or scale separation of the coefficients. Further, we propose an adaptive update strategy for the time-dependent multiscale basis. Numerical experiments illustrate the theoretical results and showcase the practicability of the adaptive update strategy.\",\"PeriodicalId\":313703,\"journal\":{\"name\":\"Multiscale Model. Simul.\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multiscale Model. Simul.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5445/IR/1000136031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5445/IR/1000136031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑具有时变、空间多尺度系数的经典波动方程。本文以空间上的局部正交分解为精神,在时间上采用倒推欧拉格式,提出了一种完全离散的计算多尺度方法。我们展示了空间和时间上的最优收敛率,超出了系数的空间周期性或尺度分离的假设。在此基础上,提出了一种时变多尺度基的自适应更新策略。数值实验验证了理论结果,证明了自适应更新策略的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical upscaling for wave equations with time-dependent multiscale coefficients
In this paper, we consider the classical wave equation with time-dependent, spatially multiscale coefficients. We propose a fully discrete computational multiscale method in the spirit of the localized orthogonal decomposition in space with a backward Euler scheme in time. We show optimal convergence rates in space and time beyond the assumptions of spatial periodicity or scale separation of the coefficients. Further, we propose an adaptive update strategy for the time-dependent multiscale basis. Numerical experiments illustrate the theoretical results and showcase the practicability of the adaptive update strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信