{"title":"基于深度和骨架的视觉不变人体动作识别","authors":"Parth Mahajan, Aniket Gupta","doi":"10.1109/GCAT52182.2021.9587638","DOIUrl":null,"url":null,"abstract":"Recognition of human activity plays an important role in computer-human interaction, surveillance, reconnaissance, robotics for humans, and understanding interpersonal behaviour relationships. These activities can be recorded as a sequence of still images but only using vision to solve the HAR poses a major task due to problems like scale variation, wide change, in contrast, lighting, viewpoint and occlusions. Thus to address this our work is concentrated on developing and training two deep learning pipelines one Spatiotemporal based and the other being skeletal based on publicly available human activity classification datasets. Moreover, we merge the two pipelines using late fusion and provide a comparison between the three with the existing state of the art algorithms for various activities in the dataset. Finally, we present the future work for the same problem.","PeriodicalId":436231,"journal":{"name":"2021 2nd Global Conference for Advancement in Technology (GCAT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Depth And Skeleton Based View-invariant Human Action Recognition\",\"authors\":\"Parth Mahajan, Aniket Gupta\",\"doi\":\"10.1109/GCAT52182.2021.9587638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recognition of human activity plays an important role in computer-human interaction, surveillance, reconnaissance, robotics for humans, and understanding interpersonal behaviour relationships. These activities can be recorded as a sequence of still images but only using vision to solve the HAR poses a major task due to problems like scale variation, wide change, in contrast, lighting, viewpoint and occlusions. Thus to address this our work is concentrated on developing and training two deep learning pipelines one Spatiotemporal based and the other being skeletal based on publicly available human activity classification datasets. Moreover, we merge the two pipelines using late fusion and provide a comparison between the three with the existing state of the art algorithms for various activities in the dataset. Finally, we present the future work for the same problem.\",\"PeriodicalId\":436231,\"journal\":{\"name\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd Global Conference for Advancement in Technology (GCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCAT52182.2021.9587638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd Global Conference for Advancement in Technology (GCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCAT52182.2021.9587638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Depth And Skeleton Based View-invariant Human Action Recognition
Recognition of human activity plays an important role in computer-human interaction, surveillance, reconnaissance, robotics for humans, and understanding interpersonal behaviour relationships. These activities can be recorded as a sequence of still images but only using vision to solve the HAR poses a major task due to problems like scale variation, wide change, in contrast, lighting, viewpoint and occlusions. Thus to address this our work is concentrated on developing and training two deep learning pipelines one Spatiotemporal based and the other being skeletal based on publicly available human activity classification datasets. Moreover, we merge the two pipelines using late fusion and provide a comparison between the three with the existing state of the art algorithms for various activities in the dataset. Finally, we present the future work for the same problem.