Gauthier Voron, Gaël Thomas, Vivien Quéma, Pierre Sens
{"title":"在Xen管理程序中实现NUMA策略的接口","authors":"Gauthier Voron, Gaël Thomas, Vivien Quéma, Pierre Sens","doi":"10.1145/3064176.3064196","DOIUrl":null,"url":null,"abstract":"While virtualization only introduces a small overhead on machines with few cores, this is not the case on larger ones. Most of the overhead on the latter machines is caused by the Non-Uniform Memory Access (NUMA) architecture they are using. In order to reduce this overhead, this paper shows how NUMA placement heuristics can be implemented inside Xen. With an evaluation of 29 applications on a 48-core machine, we show that the NUMA placement heuristics can multiply the performance of 9 applications by more than 2.","PeriodicalId":262089,"journal":{"name":"Proceedings of the Twelfth European Conference on Computer Systems","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"An interface to implement NUMA policies in the Xen hypervisor\",\"authors\":\"Gauthier Voron, Gaël Thomas, Vivien Quéma, Pierre Sens\",\"doi\":\"10.1145/3064176.3064196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While virtualization only introduces a small overhead on machines with few cores, this is not the case on larger ones. Most of the overhead on the latter machines is caused by the Non-Uniform Memory Access (NUMA) architecture they are using. In order to reduce this overhead, this paper shows how NUMA placement heuristics can be implemented inside Xen. With an evaluation of 29 applications on a 48-core machine, we show that the NUMA placement heuristics can multiply the performance of 9 applications by more than 2.\",\"PeriodicalId\":262089,\"journal\":{\"name\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3064176.3064196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3064176.3064196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An interface to implement NUMA policies in the Xen hypervisor
While virtualization only introduces a small overhead on machines with few cores, this is not the case on larger ones. Most of the overhead on the latter machines is caused by the Non-Uniform Memory Access (NUMA) architecture they are using. In order to reduce this overhead, this paper shows how NUMA placement heuristics can be implemented inside Xen. With an evaluation of 29 applications on a 48-core machine, we show that the NUMA placement heuristics can multiply the performance of 9 applications by more than 2.