用矩阵分解聚类数据

H. Abdulla, M. Polovincak, V. Snás̃el
{"title":"用矩阵分解聚类数据","authors":"H. Abdulla, M. Polovincak, V. Snás̃el","doi":"10.1109/CASON.2009.11","DOIUrl":null,"url":null,"abstract":"There are many search engines in the web and when asked, they return a long list of search results, ranked by their relevancies to the given query. Web users have to go through the list and examine the titles and (short) snippets sequentially to identify their required results. In this paper we present how usage of Matrix Decomposition (Singular Value Decomposition (SVD) and Nonnegative Matrix Factorization (NMF)) can be good solution for the search results clustering.","PeriodicalId":425748,"journal":{"name":"2009 International Conference on Computational Aspects of Social Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Using a Matrix Decomposition for Clustering Data\",\"authors\":\"H. Abdulla, M. Polovincak, V. Snás̃el\",\"doi\":\"10.1109/CASON.2009.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are many search engines in the web and when asked, they return a long list of search results, ranked by their relevancies to the given query. Web users have to go through the list and examine the titles and (short) snippets sequentially to identify their required results. In this paper we present how usage of Matrix Decomposition (Singular Value Decomposition (SVD) and Nonnegative Matrix Factorization (NMF)) can be good solution for the search results clustering.\",\"PeriodicalId\":425748,\"journal\":{\"name\":\"2009 International Conference on Computational Aspects of Social Networks\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Aspects of Social Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASON.2009.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Aspects of Social Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASON.2009.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在网络上有很多搜索引擎,当被询问时,它们会返回一个很长的搜索结果列表,根据它们与给定查询的相关性进行排名。Web用户必须浏览列表并依次检查标题和(短)片段,以确定他们需要的结果。本文介绍了矩阵分解(奇异值分解(SVD)和非负矩阵分解(NMF))是如何很好地解决搜索结果聚类问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using a Matrix Decomposition for Clustering Data
There are many search engines in the web and when asked, they return a long list of search results, ranked by their relevancies to the given query. Web users have to go through the list and examine the titles and (short) snippets sequentially to identify their required results. In this paper we present how usage of Matrix Decomposition (Singular Value Decomposition (SVD) and Nonnegative Matrix Factorization (NMF)) can be good solution for the search results clustering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信