在杂乱背景下的鲁棒形状跟踪

J. Nascimento, J. Marques
{"title":"在杂乱背景下的鲁棒形状跟踪","authors":"J. Nascimento, J. Marques","doi":"10.1109/ICIP.2000.899300","DOIUrl":null,"url":null,"abstract":"Kalman filtering has been extensively used in object tracking. However, the tracker performance is severely affected in the presence of multiple objects and cluttered background. The reason is simple. Feature detection produces many outliers and the Kalman filter is not able to discriminate valid data from the clutter. This paper overcome this difficulty and describes a robust algorithm for object tracking denoted as S-PDAF (shape-probabilistic data association filter). Experimental tests show that significant robustness improvement is achieved by the S-PDAF algorithm.","PeriodicalId":193198,"journal":{"name":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Robust shape tracking in the presence of cluttered background\",\"authors\":\"J. Nascimento, J. Marques\",\"doi\":\"10.1109/ICIP.2000.899300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kalman filtering has been extensively used in object tracking. However, the tracker performance is severely affected in the presence of multiple objects and cluttered background. The reason is simple. Feature detection produces many outliers and the Kalman filter is not able to discriminate valid data from the clutter. This paper overcome this difficulty and describes a robust algorithm for object tracking denoted as S-PDAF (shape-probabilistic data association filter). Experimental tests show that significant robustness improvement is achieved by the S-PDAF algorithm.\",\"PeriodicalId\":193198,\"journal\":{\"name\":\"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2000.899300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2000.899300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

卡尔曼滤波在目标跟踪中得到了广泛应用。然而,在多目标和杂乱的背景下,跟踪器的性能会受到严重影响。原因很简单。特征检测产生许多异常值,卡尔曼滤波不能从杂波中区分有效数据。本文克服了这一困难,提出了一种鲁棒的目标跟踪算法S-PDAF(形状-概率数据关联滤波)。实验结果表明,S-PDAF算法的鲁棒性得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust shape tracking in the presence of cluttered background
Kalman filtering has been extensively used in object tracking. However, the tracker performance is severely affected in the presence of multiple objects and cluttered background. The reason is simple. Feature detection produces many outliers and the Kalman filter is not able to discriminate valid data from the clutter. This paper overcome this difficulty and describes a robust algorithm for object tracking denoted as S-PDAF (shape-probabilistic data association filter). Experimental tests show that significant robustness improvement is achieved by the S-PDAF algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信