{"title":"使用DEDICOM分析用户流失迁移","authors":"R. Sifa, C. Ojeda, C. Bauckhage","doi":"10.1145/2792838.2799680","DOIUrl":null,"url":null,"abstract":"Time plays an important role regarding user preferences for products. It introduces asymmetries into the adoption of products which should be considered in the context of recommender systems and business intelligence. We therefore investigate how temporally asymmetric user preferences can be analyzed using a latent factor model called Decomposition Into Directional Components (DEDICOM). We introduce a new scalable hybrid algorithm that combines projected gradient descent and alternating least squares updates to compute DEDICOM and imposes semi-nonnegativity constraints to better interpret the resulting factors. We apply our model to analyze user churn and migration between different computer games in a social gaming environment.","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"User Churn Migration Analysis with DEDICOM\",\"authors\":\"R. Sifa, C. Ojeda, C. Bauckhage\",\"doi\":\"10.1145/2792838.2799680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time plays an important role regarding user preferences for products. It introduces asymmetries into the adoption of products which should be considered in the context of recommender systems and business intelligence. We therefore investigate how temporally asymmetric user preferences can be analyzed using a latent factor model called Decomposition Into Directional Components (DEDICOM). We introduce a new scalable hybrid algorithm that combines projected gradient descent and alternating least squares updates to compute DEDICOM and imposes semi-nonnegativity constraints to better interpret the resulting factors. We apply our model to analyze user churn and migration between different computer games in a social gaming environment.\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2799680\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2799680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time plays an important role regarding user preferences for products. It introduces asymmetries into the adoption of products which should be considered in the context of recommender systems and business intelligence. We therefore investigate how temporally asymmetric user preferences can be analyzed using a latent factor model called Decomposition Into Directional Components (DEDICOM). We introduce a new scalable hybrid algorithm that combines projected gradient descent and alternating least squares updates to compute DEDICOM and imposes semi-nonnegativity constraints to better interpret the resulting factors. We apply our model to analyze user churn and migration between different computer games in a social gaming environment.