{"title":"地球物理边缘波的精确解和不稳定性","authors":"Fahe Miao, Michal Feckan, Jinrong Wang","doi":"10.3934/cpaa.2022067","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We present an exact solution to the nonlinear governing equations in the <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\beta $\\end{document}</tex-math></inline-formula>-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Exact solution and instability for geophysical edge waves\",\"authors\":\"Fahe Miao, Michal Feckan, Jinrong Wang\",\"doi\":\"10.3934/cpaa.2022067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We present an exact solution to the nonlinear governing equations in the <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ \\\\beta $\\\\end{document}</tex-math></inline-formula>-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.</p>\",\"PeriodicalId\":435074,\"journal\":{\"name\":\"Communications on Pure & Applied Analysis\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure & Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/cpaa.2022067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
We present an exact solution to the nonlinear governing equations in the \begin{document}$ \beta $\end{document}-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.
Exact solution and instability for geophysical edge waves
We present an exact solution to the nonlinear governing equations in the \begin{document}$ \beta $\end{document}-plane approximation for geophysical edge waves at an arbitrary latitude. Such an exact solution is derived in the Lagrange framework, which describes trapped waves propagating eastward or westward along a sloping beach with a shoreline parallel to the latitude line. Using the short-wavelength instability method, we establish a criterion for the instability of such waves.