两个奇异分布的卷积:经典康托型和独立九位数随机变量

M. Pratsiovytyi, S. Ratushniak, Yu. Symonenko, D. Shpytuk
{"title":"两个奇异分布的卷积:经典康托型和独立九位数随机变量","authors":"M. Pratsiovytyi, S. Ratushniak, Yu. Symonenko, D. Shpytuk","doi":"10.31861/bmj2022.02.16","DOIUrl":null,"url":null,"abstract":"We consider distribution of random variable $\\xi=\\tau+\\eta$, where $\\tau$ and $\\eta$ independent random variables, moreover $\\tau$ has classic Cantor type distribution and $\\eta$ is a random variable with independent identically distributed digits of the nine-digit representation. With additional conditions for the distributions of the digits $\\eta$, sufficient conditions for the singularity of the Cantor type of the distribution $\\xi$ are specified. To substantiate the statements, a topological-metric analysis of the representation of numbers $x\\in [0;2]$ in the numerical system with base $9$ and a seventeen-symbol alphabet (a set of numbers) is carried out. The geometry (positional and metric) of this representation is described by the properties of the corresponding cylindrical sets.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONVOLUTION OF TWO SINGULAR DISTRIBUTIONS: CLASSIC CANTOR TYPE AND RANDOM VARIABLE WITH INDEPENDENT NINE DIGITS\",\"authors\":\"M. Pratsiovytyi, S. Ratushniak, Yu. Symonenko, D. Shpytuk\",\"doi\":\"10.31861/bmj2022.02.16\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider distribution of random variable $\\\\xi=\\\\tau+\\\\eta$, where $\\\\tau$ and $\\\\eta$ independent random variables, moreover $\\\\tau$ has classic Cantor type distribution and $\\\\eta$ is a random variable with independent identically distributed digits of the nine-digit representation. With additional conditions for the distributions of the digits $\\\\eta$, sufficient conditions for the singularity of the Cantor type of the distribution $\\\\xi$ are specified. To substantiate the statements, a topological-metric analysis of the representation of numbers $x\\\\in [0;2]$ in the numerical system with base $9$ and a seventeen-symbol alphabet (a set of numbers) is carried out. The geometry (positional and metric) of this representation is described by the properties of the corresponding cylindrical sets.\",\"PeriodicalId\":196726,\"journal\":{\"name\":\"Bukovinian Mathematical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bukovinian Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31861/bmj2022.02.16\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑随机变量$\xi=\tau+\eta$的分布,其中$\tau$和$\eta$是独立的随机变量,并且$\tau$具有经典的Cantor型分布,$\eta$是一个独立的同分布的随机数为9位表示的随机变量。通过对数字分布$\eta$的附加条件,给出了分布$\xi$的Cantor型奇异性的充分条件。为了证实这些陈述,在以$9$为基数和17个符号的字母表(一组数字)的数字系统中,对数字$x\in [0;2]$的表示进行了拓扑度量分析。这种表示的几何(位置和度量)由相应柱集的性质来描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONVOLUTION OF TWO SINGULAR DISTRIBUTIONS: CLASSIC CANTOR TYPE AND RANDOM VARIABLE WITH INDEPENDENT NINE DIGITS
We consider distribution of random variable $\xi=\tau+\eta$, where $\tau$ and $\eta$ independent random variables, moreover $\tau$ has classic Cantor type distribution and $\eta$ is a random variable with independent identically distributed digits of the nine-digit representation. With additional conditions for the distributions of the digits $\eta$, sufficient conditions for the singularity of the Cantor type of the distribution $\xi$ are specified. To substantiate the statements, a topological-metric analysis of the representation of numbers $x\in [0;2]$ in the numerical system with base $9$ and a seventeen-symbol alphabet (a set of numbers) is carried out. The geometry (positional and metric) of this representation is described by the properties of the corresponding cylindrical sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信