复合材料加固抗爆钢筋混凝土楼板

Binggeng Lu, Pedro F. Silva, A. Nanni, J. Baird
{"title":"复合材料加固抗爆钢筋混凝土楼板","authors":"Binggeng Lu, Pedro F. Silva, A. Nanni, J. Baird","doi":"10.14359/14897","DOIUrl":null,"url":null,"abstract":"Synopsis: This research program was initiated to examine the feasibility of assessing the blast-resistant capacity of reinforced concrete (RC) slabs using the displacement based design (DBD) method. In order to achieve this objective, five RC slabs were tested under real blast loads in the out-of-plane direction. One of the slabs was used as the control unit to establish a baseline for comparison in terms of performance for the other four slabs, which were strengthened with fiber reinforced polymer (FRP) and steel fiber reinforced polymer (SRP). The explosive charge weight and stand-off distance required to impose a given damage level were predicted by the DBD method. Test results showed that the blast loads were effectively estimated and the damage levels observed from the field tests correlated well with the predicted levels. In addition, test results corroborated that the blast-resistant capacity of RC slabs can be effectively increased by strengthening using FRP composites. The main conclusion that can be drawn from these tests using improvised explosive devices (IDE) is that RC slabs retrofitted on both sides have a higher blast resistance capacity than those slabs retrofitted only on one side. This paper discusses these experimental results along with the analysis steps used to predict the blast charge and standoff distance to impose a given damage level.","PeriodicalId":151616,"journal":{"name":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Retrofit for Blast-Resistant RC Slabs with Composite Materials\",\"authors\":\"Binggeng Lu, Pedro F. Silva, A. Nanni, J. Baird\",\"doi\":\"10.14359/14897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synopsis: This research program was initiated to examine the feasibility of assessing the blast-resistant capacity of reinforced concrete (RC) slabs using the displacement based design (DBD) method. In order to achieve this objective, five RC slabs were tested under real blast loads in the out-of-plane direction. One of the slabs was used as the control unit to establish a baseline for comparison in terms of performance for the other four slabs, which were strengthened with fiber reinforced polymer (FRP) and steel fiber reinforced polymer (SRP). The explosive charge weight and stand-off distance required to impose a given damage level were predicted by the DBD method. Test results showed that the blast loads were effectively estimated and the damage levels observed from the field tests correlated well with the predicted levels. In addition, test results corroborated that the blast-resistant capacity of RC slabs can be effectively increased by strengthening using FRP composites. The main conclusion that can be drawn from these tests using improvised explosive devices (IDE) is that RC slabs retrofitted on both sides have a higher blast resistance capacity than those slabs retrofitted only on one side. This paper discusses these experimental results along with the analysis steps used to predict the blast charge and standoff distance to impose a given damage level.\",\"PeriodicalId\":151616,\"journal\":{\"name\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14359/14897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-230: 7th International Symposium on Fiber-Reinforced (FRP) Polymer Reinforcement for Concrete Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/14897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

摘要:本研究项目旨在探讨采用基于位移的设计(DBD)方法评估钢筋混凝土(RC)板抗爆能力的可行性。为了实现这一目标,对5块钢筋混凝土板进行了面外方向的实际爆炸荷载试验。其中一块板被用作控制单元,以建立基线,以比较其他四块用纤维增强聚合物(FRP)和钢纤维增强聚合物(SRP)加固的板的性能。利用DBD方法预测了达到一定杀伤水平所需的装药量和距离。试验结果表明,该方法有效地估计了爆炸载荷,现场试验观察到的损伤水平与预测水平具有良好的相关性。此外,试验结果证实FRP复合材料加固可以有效提高RC板的抗爆能力。从这些简易爆炸装置(IDE)试验中可以得出的主要结论是,两侧改造的混凝土板比仅一侧改造的混凝土板具有更高的抗爆炸能力。本文讨论了这些实验结果,并给出了在给定损伤水平下预测爆炸装药和离地距离的分析步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrofit for Blast-Resistant RC Slabs with Composite Materials
Synopsis: This research program was initiated to examine the feasibility of assessing the blast-resistant capacity of reinforced concrete (RC) slabs using the displacement based design (DBD) method. In order to achieve this objective, five RC slabs were tested under real blast loads in the out-of-plane direction. One of the slabs was used as the control unit to establish a baseline for comparison in terms of performance for the other four slabs, which were strengthened with fiber reinforced polymer (FRP) and steel fiber reinforced polymer (SRP). The explosive charge weight and stand-off distance required to impose a given damage level were predicted by the DBD method. Test results showed that the blast loads were effectively estimated and the damage levels observed from the field tests correlated well with the predicted levels. In addition, test results corroborated that the blast-resistant capacity of RC slabs can be effectively increased by strengthening using FRP composites. The main conclusion that can be drawn from these tests using improvised explosive devices (IDE) is that RC slabs retrofitted on both sides have a higher blast resistance capacity than those slabs retrofitted only on one side. This paper discusses these experimental results along with the analysis steps used to predict the blast charge and standoff distance to impose a given damage level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信