Valentin Marchal, Yicha Zhang, N. Labed, R. Lachat, F. Peyraut
{"title":"连续纤维增强材料挤压过程中快速层纤维取向优化方法","authors":"Valentin Marchal, Yicha Zhang, N. Labed, R. Lachat, F. Peyraut","doi":"10.36922/msam.49","DOIUrl":null,"url":null,"abstract":"Material extrusion (MEX) is an additive manufacturing process that uses thermoplastic layer-by-layer building. The use of continuous fiber-reinforced filament enhances mechanical properties, making MEX suitable for use in aerospace, automotive, and robotics industries. This study proposes a laminate optimization method to improve the stiffness of printed parts with low computing time. The 2D stress-flow-based method optimizes fiber’s orientation for each layer in the stacking direction, giving results for a 3D part optimization in a few minutes. Developed with Ansys Parametric Design Language, the computation tool was tested on printed wrenches, resulting in an 18% increase in stiffness. The proposed method is applicable to any printable shape.","PeriodicalId":422581,"journal":{"name":"Materials Science in Additive Manufacturing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast layer fiber orientation optimization method for continuous fiber-reinforced material extrusion process\",\"authors\":\"Valentin Marchal, Yicha Zhang, N. Labed, R. Lachat, F. Peyraut\",\"doi\":\"10.36922/msam.49\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Material extrusion (MEX) is an additive manufacturing process that uses thermoplastic layer-by-layer building. The use of continuous fiber-reinforced filament enhances mechanical properties, making MEX suitable for use in aerospace, automotive, and robotics industries. This study proposes a laminate optimization method to improve the stiffness of printed parts with low computing time. The 2D stress-flow-based method optimizes fiber’s orientation for each layer in the stacking direction, giving results for a 3D part optimization in a few minutes. Developed with Ansys Parametric Design Language, the computation tool was tested on printed wrenches, resulting in an 18% increase in stiffness. The proposed method is applicable to any printable shape.\",\"PeriodicalId\":422581,\"journal\":{\"name\":\"Materials Science in Additive Manufacturing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36922/msam.49\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36922/msam.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast layer fiber orientation optimization method for continuous fiber-reinforced material extrusion process
Material extrusion (MEX) is an additive manufacturing process that uses thermoplastic layer-by-layer building. The use of continuous fiber-reinforced filament enhances mechanical properties, making MEX suitable for use in aerospace, automotive, and robotics industries. This study proposes a laminate optimization method to improve the stiffness of printed parts with low computing time. The 2D stress-flow-based method optimizes fiber’s orientation for each layer in the stacking direction, giving results for a 3D part optimization in a few minutes. Developed with Ansys Parametric Design Language, the computation tool was tested on printed wrenches, resulting in an 18% increase in stiffness. The proposed method is applicable to any printable shape.