基于近传感器应用的机器学习计算和通信约简技术

M. A. Neggaz, S. Niar, F. Kurdahi
{"title":"基于近传感器应用的机器学习计算和通信约简技术","authors":"M. A. Neggaz, S. Niar, F. Kurdahi","doi":"10.1109/ICM.2018.8704033","DOIUrl":null,"url":null,"abstract":"State-of-the-art Convolutional Neural Networks (CNN) are used to process images. In most cases, videos are streamed and processed frame by frame using a CNN. In this paper we present a two-step approach to process images in a real-life streaming environment. We exploit size-reduction and data encoding to reduce the computational and communication load. A near-sensor architecture is proposed. The final design reaches 14 EPS for the full Faster R-CNN pipeline.","PeriodicalId":305356,"journal":{"name":"2018 30th International Conference on Microelectronics (ICM)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational and Communication Reduction Technique in Machine Learning Based Near Sensor Applications\",\"authors\":\"M. A. Neggaz, S. Niar, F. Kurdahi\",\"doi\":\"10.1109/ICM.2018.8704033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State-of-the-art Convolutional Neural Networks (CNN) are used to process images. In most cases, videos are streamed and processed frame by frame using a CNN. In this paper we present a two-step approach to process images in a real-life streaming environment. We exploit size-reduction and data encoding to reduce the computational and communication load. A near-sensor architecture is proposed. The final design reaches 14 EPS for the full Faster R-CNN pipeline.\",\"PeriodicalId\":305356,\"journal\":{\"name\":\"2018 30th International Conference on Microelectronics (ICM)\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2018.8704033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2018.8704033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

最先进的卷积神经网络(CNN)用于处理图像。在大多数情况下,视频是流式传输的,并使用CNN逐帧处理。在本文中,我们提出了一种两步方法来处理现实生活中的流环境中的图像。我们利用尺寸缩减和数据编码来减少计算和通信负载。提出了一种近传感器结构。最终设计达到14 EPS的全更快R-CNN管道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational and Communication Reduction Technique in Machine Learning Based Near Sensor Applications
State-of-the-art Convolutional Neural Networks (CNN) are used to process images. In most cases, videos are streamed and processed frame by frame using a CNN. In this paper we present a two-step approach to process images in a real-life streaming environment. We exploit size-reduction and data encoding to reduce the computational and communication load. A near-sensor architecture is proposed. The final design reaches 14 EPS for the full Faster R-CNN pipeline.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信