求职网站的职位信息抓取、可视化和聚类

Zhen Yang, Sanxing Cao
{"title":"求职网站的职位信息抓取、可视化和聚类","authors":"Zhen Yang, Sanxing Cao","doi":"10.1109/IAEAC47372.2019.8997713","DOIUrl":null,"url":null,"abstract":"With so much information available on job-hunting websites, the partial information provided by job-hunting websites is of little reference value to fresh graduates or cross-industry job seekers. This paper is a machine learning algorithm based on Python language. It makes a comprehensive analysis of job information and realizes the visualization and text clustering of job information. It has good applicability and is convenient to be extended to other fields.","PeriodicalId":164163,"journal":{"name":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Job Information Crawling, Visualization and Clustering of Job Search Websites\",\"authors\":\"Zhen Yang, Sanxing Cao\",\"doi\":\"10.1109/IAEAC47372.2019.8997713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With so much information available on job-hunting websites, the partial information provided by job-hunting websites is of little reference value to fresh graduates or cross-industry job seekers. This paper is a machine learning algorithm based on Python language. It makes a comprehensive analysis of job information and realizes the visualization and text clustering of job information. It has good applicability and is convenient to be extended to other fields.\",\"PeriodicalId\":164163,\"journal\":{\"name\":\"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAEAC47372.2019.8997713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC47372.2019.8997713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

求职网站上的信息如此之多,求职网站提供的部分信息对应届毕业生或跨行业求职者的参考价值不大。本文是一种基于Python语言的机器学习算法。对招聘信息进行综合分析,实现招聘信息的可视化和文本聚类。它具有良好的适用性,便于推广到其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Job Information Crawling, Visualization and Clustering of Job Search Websites
With so much information available on job-hunting websites, the partial information provided by job-hunting websites is of little reference value to fresh graduates or cross-industry job seekers. This paper is a machine learning algorithm based on Python language. It makes a comprehensive analysis of job information and realizes the visualization and text clustering of job information. It has good applicability and is convenient to be extended to other fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信