{"title":"基于卷积神经网络(CNN)图像的悲伤情绪和抑郁分类","authors":"Muhammad Fathur Prayuda","doi":"10.32493/informatika.v6i1.8433","DOIUrl":null,"url":null,"abstract":"The human face has various functions, especially in expressing something. The expression shown has a unique shape so that it can recognize the atmosphere of the feeling that is being felt. The appearance of a feeling is usually caused by emotion. Research on the classification of emotions has been carried out using various methods. For this study, a Convolutional Neural Network (CNN) method was used which serves as a classifier for sad and depressive emotions. The CNN method has the advantage of preprocessing convolution so that it can extract a hidden feature in an image. The dataset used in this study came from the Facial expression dataset image folders (fer2013) where the dataset used for classification was taken with a ratio of 60% training and 40% validation with the results of the trained model of 60% total loss and 68% test accuracy.","PeriodicalId":251854,"journal":{"name":"Jurnal Informatika Universitas Pamulang","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Sad Emotions and Depression Through Images Using Convolutional Neural Network (CNN)\",\"authors\":\"Muhammad Fathur Prayuda\",\"doi\":\"10.32493/informatika.v6i1.8433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The human face has various functions, especially in expressing something. The expression shown has a unique shape so that it can recognize the atmosphere of the feeling that is being felt. The appearance of a feeling is usually caused by emotion. Research on the classification of emotions has been carried out using various methods. For this study, a Convolutional Neural Network (CNN) method was used which serves as a classifier for sad and depressive emotions. The CNN method has the advantage of preprocessing convolution so that it can extract a hidden feature in an image. The dataset used in this study came from the Facial expression dataset image folders (fer2013) where the dataset used for classification was taken with a ratio of 60% training and 40% validation with the results of the trained model of 60% total loss and 68% test accuracy.\",\"PeriodicalId\":251854,\"journal\":{\"name\":\"Jurnal Informatika Universitas Pamulang\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Universitas Pamulang\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32493/informatika.v6i1.8433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Universitas Pamulang","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32493/informatika.v6i1.8433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Sad Emotions and Depression Through Images Using Convolutional Neural Network (CNN)
The human face has various functions, especially in expressing something. The expression shown has a unique shape so that it can recognize the atmosphere of the feeling that is being felt. The appearance of a feeling is usually caused by emotion. Research on the classification of emotions has been carried out using various methods. For this study, a Convolutional Neural Network (CNN) method was used which serves as a classifier for sad and depressive emotions. The CNN method has the advantage of preprocessing convolution so that it can extract a hidden feature in an image. The dataset used in this study came from the Facial expression dataset image folders (fer2013) where the dataset used for classification was taken with a ratio of 60% training and 40% validation with the results of the trained model of 60% total loss and 68% test accuracy.