{"title":"求解非线性弱奇异Volterra和Fredholm积分方程的改进Adomian分解方法和噪声项现象","authors":"A. Wazwaz, R. Rach, Jun-Sheng Duan","doi":"10.2478/s13531-013-0123-8","DOIUrl":null,"url":null,"abstract":"In this paper, we use the systematic modified Adomian decomposition method (ADM) and the phenomenon of the self-canceling ”noise” terms for solving nonlinear weakly-singular Volterra, Fredholm, and Volterra-Fredholm integral equations. We show that the proposed approach minimizes the computation, when compared with other conventional schemes. Our results are validated by investigating several examples.","PeriodicalId":407983,"journal":{"name":"Central European Journal of Engineering","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations\",\"authors\":\"A. Wazwaz, R. Rach, Jun-Sheng Duan\",\"doi\":\"10.2478/s13531-013-0123-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we use the systematic modified Adomian decomposition method (ADM) and the phenomenon of the self-canceling ”noise” terms for solving nonlinear weakly-singular Volterra, Fredholm, and Volterra-Fredholm integral equations. We show that the proposed approach minimizes the computation, when compared with other conventional schemes. Our results are validated by investigating several examples.\",\"PeriodicalId\":407983,\"journal\":{\"name\":\"Central European Journal of Engineering\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s13531-013-0123-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s13531-013-0123-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The modified Adomian decomposition method and the noise terms phenomenon for solving nonlinear weakly-singular Volterra and Fredholm integral equations
In this paper, we use the systematic modified Adomian decomposition method (ADM) and the phenomenon of the self-canceling ”noise” terms for solving nonlinear weakly-singular Volterra, Fredholm, and Volterra-Fredholm integral equations. We show that the proposed approach minimizes the computation, when compared with other conventional schemes. Our results are validated by investigating several examples.