关于低次上同调类局部紧群的强Novikov猜想

Yoshiyasu Fukumoto
{"title":"关于低次上同调类局部紧群的强Novikov猜想","authors":"Yoshiyasu Fukumoto","doi":"10.14989/DOCTOR.K20046","DOIUrl":null,"url":null,"abstract":"The main result of this paper is non-vanishing of the image of the index map from the $G$-equivariant $K$-homology of a proper $G$-compact $G$-manifold $X$ to the $K$-theory of the $C^{*}$-algebra of the group $G$. Under the assumption that the Kronecker pairing of a $K$-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group $G$ nor freeness of the action of $G$ on $X$ are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On the Strong Novikov Conjecture of Locally Compact Groups for Low Degree Cohomology Classes\",\"authors\":\"Yoshiyasu Fukumoto\",\"doi\":\"10.14989/DOCTOR.K20046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main result of this paper is non-vanishing of the image of the index map from the $G$-equivariant $K$-homology of a proper $G$-compact $G$-manifold $X$ to the $K$-theory of the $C^{*}$-algebra of the group $G$. Under the assumption that the Kronecker pairing of a $K$-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group $G$ nor freeness of the action of $G$ on $X$ are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14989/DOCTOR.K20046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14989/DOCTOR.K20046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文的主要结果是:从固有的$G$-紧$G$-流形$X$的$G$-等变$K$-同调到群$G$的$C^{*}$-代数的$K$-理论的索引映射的象不消失。在假设K -同调类与低维上同调类的Kronecker配对不为零的前提下,证明了该类在索引映射下的像不为零。既不要求局部紧群$G$的离散性,也不要求$G$对$X$作用的自由性。早先B. Hanke和T. Schick考虑过离散群的自由作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Strong Novikov Conjecture of Locally Compact Groups for Low Degree Cohomology Classes
The main result of this paper is non-vanishing of the image of the index map from the $G$-equivariant $K$-homology of a proper $G$-compact $G$-manifold $X$ to the $K$-theory of the $C^{*}$-algebra of the group $G$. Under the assumption that the Kronecker pairing of a $K$-homology class with a low-dimensional cohomology class is non-zero, we prove that the image of this class under the index map is non-zero. Neither discreteness of the locally compact group $G$ nor freeness of the action of $G$ on $X$ are required. The case of free actions of discrete groups was considered earlier by B. Hanke and T. Schick.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信