TK-BERT:基于主题的知识图语言表示的有效模型

Chanwook Min, Jinhyun Ahn, Taewhi Lee, Dong-Hyuk Im
{"title":"TK-BERT:基于主题的知识图语言表示的有效模型","authors":"Chanwook Min, Jinhyun Ahn, Taewhi Lee, Dong-Hyuk Im","doi":"10.1109/IMCOM56909.2023.10035573","DOIUrl":null,"url":null,"abstract":"Recently, the K-BERT model was proposed to add knowledge for language representation in specialized fields. The K-BERT model uses a knowledge graph to perform transfer learning on the pre-trained BERT model. However, the K-BERT model adds the knowledge that exists in the knowledge graph rather than the data relevant to the topic of the input data when using the knowledge graph of the corresponding field. Hence, the K-BERT model can cause confusion in the training. To solve this problem, this study proposes a topic-based knowledge graph BERT (TK-BERT) model, which uses the topic modeling technique. The TK-BERT model divides the knowledge graph by topic using the knowledge graph's topic model and infers the topic for the input sentence, adding only knowledge relevant to the topic. Therefore, the TK-BERT model does not add unnecessary knowledge to the knowledge graph. Moreover, the proposed TK-BERT model outperforms the K-BERT model.","PeriodicalId":230213,"journal":{"name":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"TK-BERT: Effective Model of Language Representation using Topic-based Knowledge Graphs\",\"authors\":\"Chanwook Min, Jinhyun Ahn, Taewhi Lee, Dong-Hyuk Im\",\"doi\":\"10.1109/IMCOM56909.2023.10035573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the K-BERT model was proposed to add knowledge for language representation in specialized fields. The K-BERT model uses a knowledge graph to perform transfer learning on the pre-trained BERT model. However, the K-BERT model adds the knowledge that exists in the knowledge graph rather than the data relevant to the topic of the input data when using the knowledge graph of the corresponding field. Hence, the K-BERT model can cause confusion in the training. To solve this problem, this study proposes a topic-based knowledge graph BERT (TK-BERT) model, which uses the topic modeling technique. The TK-BERT model divides the knowledge graph by topic using the knowledge graph's topic model and infers the topic for the input sentence, adding only knowledge relevant to the topic. Therefore, the TK-BERT model does not add unnecessary knowledge to the knowledge graph. Moreover, the proposed TK-BERT model outperforms the K-BERT model.\",\"PeriodicalId\":230213,\"journal\":{\"name\":\"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCOM56909.2023.10035573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th International Conference on Ubiquitous Information Management and Communication (IMCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCOM56909.2023.10035573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,K-BERT模型被提出用于为特定领域的语言表示添加知识。K-BERT模型使用知识图对预训练的BERT模型进行迁移学习。然而,K-BERT模型在使用相应领域的知识图时,添加的是知识图中存在的知识,而不是与输入数据主题相关的数据。因此,K-BERT模型可能会在训练中造成混乱。为了解决这一问题,本研究提出了一种基于主题的知识图BERT (TK-BERT)模型,该模型采用主题建模技术。TK-BERT模型利用知识图的主题模型对知识图进行主题划分,对输入句子进行主题推断,只添加与主题相关的知识。因此,TK-BERT模型不会向知识图中添加不必要的知识。此外,本文提出的TK-BERT模型优于K-BERT模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TK-BERT: Effective Model of Language Representation using Topic-based Knowledge Graphs
Recently, the K-BERT model was proposed to add knowledge for language representation in specialized fields. The K-BERT model uses a knowledge graph to perform transfer learning on the pre-trained BERT model. However, the K-BERT model adds the knowledge that exists in the knowledge graph rather than the data relevant to the topic of the input data when using the knowledge graph of the corresponding field. Hence, the K-BERT model can cause confusion in the training. To solve this problem, this study proposes a topic-based knowledge graph BERT (TK-BERT) model, which uses the topic modeling technique. The TK-BERT model divides the knowledge graph by topic using the knowledge graph's topic model and infers the topic for the input sentence, adding only knowledge relevant to the topic. Therefore, the TK-BERT model does not add unnecessary knowledge to the knowledge graph. Moreover, the proposed TK-BERT model outperforms the K-BERT model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信