David A. Garrenl, J. S. Goldsteinl, D.R. Obuchon, Robert R. Greene, J. A. North
{"title":"多径反射率估计SAR图像生成算法","authors":"David A. Garrenl, J. S. Goldsteinl, D.R. Obuchon, Robert R. Greene, J. A. North","doi":"10.1109/NRC.2004.1316443","DOIUrl":null,"url":null,"abstract":"Recent analysis has resulted in an innovative technique for forming synthetic aperture radar (SAR) images without the multipath ghost artifacts that arise in traditional methods. This technique separates direct-scatter echoes in an image from echoes that are the result of multipath, and then maps each set of reflections to a metrically correct image space. Current processing schemes place the multipath echoes at incorrect (i.e., ghost) locations due to fundamental assumptions implicit in conventional array processing. Two desired results are achieved by use of this new image reconstruction algorithm for multipath scattering (IRAMS). First, the intensities or the ghost returns are reduced in the primary image space, thereby improving the relationship between the image pattern and the physical distribution of the scatterers. Second, a higher dimensional image space that enhances the intensities of the multipath echoes is created which possesses characteristic information about the scene being imaged. These auxiliary \"delay\" image planes offer the potential or dramatically improving target detection and identification capabilities. This paper develops a robust IRAMS implementation that is based upon the cross-range drift in conventional SAR imagery of the multipath scattering events with respect to changes in the relative aspect angle. The resulting analysis is validated via simulated frequency response data that includes the effects of multipath scattering.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"SAR image formation algorithm with multipath reflectivity estimation\",\"authors\":\"David A. Garrenl, J. S. Goldsteinl, D.R. Obuchon, Robert R. Greene, J. A. North\",\"doi\":\"10.1109/NRC.2004.1316443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent analysis has resulted in an innovative technique for forming synthetic aperture radar (SAR) images without the multipath ghost artifacts that arise in traditional methods. This technique separates direct-scatter echoes in an image from echoes that are the result of multipath, and then maps each set of reflections to a metrically correct image space. Current processing schemes place the multipath echoes at incorrect (i.e., ghost) locations due to fundamental assumptions implicit in conventional array processing. Two desired results are achieved by use of this new image reconstruction algorithm for multipath scattering (IRAMS). First, the intensities or the ghost returns are reduced in the primary image space, thereby improving the relationship between the image pattern and the physical distribution of the scatterers. Second, a higher dimensional image space that enhances the intensities of the multipath echoes is created which possesses characteristic information about the scene being imaged. These auxiliary \\\"delay\\\" image planes offer the potential or dramatically improving target detection and identification capabilities. This paper develops a robust IRAMS implementation that is based upon the cross-range drift in conventional SAR imagery of the multipath scattering events with respect to changes in the relative aspect angle. The resulting analysis is validated via simulated frequency response data that includes the effects of multipath scattering.\",\"PeriodicalId\":268965,\"journal\":{\"name\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NRC.2004.1316443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SAR image formation algorithm with multipath reflectivity estimation
Recent analysis has resulted in an innovative technique for forming synthetic aperture radar (SAR) images without the multipath ghost artifacts that arise in traditional methods. This technique separates direct-scatter echoes in an image from echoes that are the result of multipath, and then maps each set of reflections to a metrically correct image space. Current processing schemes place the multipath echoes at incorrect (i.e., ghost) locations due to fundamental assumptions implicit in conventional array processing. Two desired results are achieved by use of this new image reconstruction algorithm for multipath scattering (IRAMS). First, the intensities or the ghost returns are reduced in the primary image space, thereby improving the relationship between the image pattern and the physical distribution of the scatterers. Second, a higher dimensional image space that enhances the intensities of the multipath echoes is created which possesses characteristic information about the scene being imaged. These auxiliary "delay" image planes offer the potential or dramatically improving target detection and identification capabilities. This paper develops a robust IRAMS implementation that is based upon the cross-range drift in conventional SAR imagery of the multipath scattering events with respect to changes in the relative aspect angle. The resulting analysis is validated via simulated frequency response data that includes the effects of multipath scattering.