使用smoka的可伸缩集群

J. Kogan
{"title":"使用smoka的可伸缩集群","authors":"J. Kogan","doi":"10.1109/ICCTA.2007.114","DOIUrl":null,"url":null,"abstract":"The paper reports a multi-step clustering procedure equipped with a divergence (a distance like junction derived from a convex function). The first step of the procedure is a BIRCH like algorithm capable to convert very large datasets to \"summaries\" that require much less computer memory. The second step is the principal direction divisive partitioning algorithm (PDDP) that partitions the set of \"summaries\" into k clusters. This partition is the input for a smoothed k-means based clustering algorithm (smoka). The final partition of \"summaries\" generated by smoka induces a partition of the original dataset. Preliminary numerical experiments with text collections reported in the paper demonstrate smoka's remarkable accuracy and speed of convergence","PeriodicalId":308247,"journal":{"name":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Scalable Clustering with smoka\",\"authors\":\"J. Kogan\",\"doi\":\"10.1109/ICCTA.2007.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper reports a multi-step clustering procedure equipped with a divergence (a distance like junction derived from a convex function). The first step of the procedure is a BIRCH like algorithm capable to convert very large datasets to \\\"summaries\\\" that require much less computer memory. The second step is the principal direction divisive partitioning algorithm (PDDP) that partitions the set of \\\"summaries\\\" into k clusters. This partition is the input for a smoothed k-means based clustering algorithm (smoka). The final partition of \\\"summaries\\\" generated by smoka induces a partition of the original dataset. Preliminary numerical experiments with text collections reported in the paper demonstrate smoka's remarkable accuracy and speed of convergence\",\"PeriodicalId\":308247,\"journal\":{\"name\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computing: Theory and Applications (ICCTA'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCTA.2007.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computing: Theory and Applications (ICCTA'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCTA.2007.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了一个具有发散(由凸函数导出的类距离结)的多步聚类过程。该过程的第一步是一个类似BIRCH的算法,能够将非常大的数据集转换为需要更少计算机内存的“摘要”。第二步是主方向分裂划分算法(PDDP),该算法将“摘要”集划分为k个簇。该分区是基于平滑k-means聚类算法(smoka)的输入。smoka生成的“摘要”的最终分区诱导了原始数据集的分区。本文报道的文本集的初步数值实验表明,smoka具有显著的精度和收敛速度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Clustering with smoka
The paper reports a multi-step clustering procedure equipped with a divergence (a distance like junction derived from a convex function). The first step of the procedure is a BIRCH like algorithm capable to convert very large datasets to "summaries" that require much less computer memory. The second step is the principal direction divisive partitioning algorithm (PDDP) that partitions the set of "summaries" into k clusters. This partition is the input for a smoothed k-means based clustering algorithm (smoka). The final partition of "summaries" generated by smoka induces a partition of the original dataset. Preliminary numerical experiments with text collections reported in the paper demonstrate smoka's remarkable accuracy and speed of convergence
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信