可扩展的选择性交通拥堵通知

Gyözö Gidófalvi
{"title":"可扩展的选择性交通拥堵通知","authors":"Gyözö Gidófalvi","doi":"10.1145/2834126.2834134","DOIUrl":null,"url":null,"abstract":"Congestion is a major problem in most metropolitan areas. Systems that can in a timely manner inform drivers about relevant, current or predicted traffic congestion are paramount for effective traffic management. Without loss of generality, this paper proposes such a system that by adopting a grid-based discretization of space, can flexibly scale the computation cost and the geographic level of detail of traffic information that it provides. From the continuous stream of grid-based position and speed reports from vehicles, the system incrementally derives 1) statistics for detecting directional traffic congestions and 2) model parameters for a time-inhomogeneous, Markov jump process that is used to predict the likelihood that a given vehicle will encounter a detected directional congestion within the notification horizon. A simple but efficient SQL-based prototype implementation of the system that can naturally be ported to Big Data processing frameworks is also explained in detail. Empirical evaluations on millions of object trajectories show that 1) the proposed movement model captures the topology of the underlying road network space and the directional aspects of movement on it, 2) the congestion notification accuracy of the system is superior to a linear movement model based system, and 3) the prototype implementation of the system (i) scales linearly with its input load, notification horizon and spatio-temporal resolution and (ii) can in real-time process 1.14 million object trajectories.","PeriodicalId":194029,"journal":{"name":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Scalable selective traffic congestion notification\",\"authors\":\"Gyözö Gidófalvi\",\"doi\":\"10.1145/2834126.2834134\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Congestion is a major problem in most metropolitan areas. Systems that can in a timely manner inform drivers about relevant, current or predicted traffic congestion are paramount for effective traffic management. Without loss of generality, this paper proposes such a system that by adopting a grid-based discretization of space, can flexibly scale the computation cost and the geographic level of detail of traffic information that it provides. From the continuous stream of grid-based position and speed reports from vehicles, the system incrementally derives 1) statistics for detecting directional traffic congestions and 2) model parameters for a time-inhomogeneous, Markov jump process that is used to predict the likelihood that a given vehicle will encounter a detected directional congestion within the notification horizon. A simple but efficient SQL-based prototype implementation of the system that can naturally be ported to Big Data processing frameworks is also explained in detail. Empirical evaluations on millions of object trajectories show that 1) the proposed movement model captures the topology of the underlying road network space and the directional aspects of movement on it, 2) the congestion notification accuracy of the system is superior to a linear movement model based system, and 3) the prototype implementation of the system (i) scales linearly with its input load, notification horizon and spatio-temporal resolution and (ii) can in real-time process 1.14 million object trajectories.\",\"PeriodicalId\":194029,\"journal\":{\"name\":\"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2834126.2834134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth ACM SIGSPATIAL International Workshop on Mobile Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2834126.2834134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在大多数大都市地区,交通拥堵是一个主要问题。能够及时告知驾驶员相关的、当前的或预测的交通拥堵情况的系统对于有效的交通管理至关重要。在不失通用性的前提下,本文提出了一种基于网格的空间离散化系统,可以灵活地调整计算成本和所提供的交通信息的地理细节水平。从车辆基于网格的位置和速度报告的连续流中,系统增量导出1)用于检测定向交通拥堵的统计数据和2)用于预测给定车辆在通知范围内遇到检测到的定向交通拥堵的可能性的时间非齐次马尔可夫跳变过程的模型参数。本文还详细解释了一个简单而高效的基于sql的系统原型实现,该系统可以自然地移植到大数据处理框架中。对数百万个物体轨迹的经验评估表明:1)提出的运动模型捕获了底层道路网络空间的拓扑结构及其上运动的方向性方面;2)系统的拥堵通知准确性优于基于线性运动模型的系统;3)系统的原型实现(i)随输入负载线性扩展;通知视界和时空分辨率(ii)可以实时处理114万个物体轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable selective traffic congestion notification
Congestion is a major problem in most metropolitan areas. Systems that can in a timely manner inform drivers about relevant, current or predicted traffic congestion are paramount for effective traffic management. Without loss of generality, this paper proposes such a system that by adopting a grid-based discretization of space, can flexibly scale the computation cost and the geographic level of detail of traffic information that it provides. From the continuous stream of grid-based position and speed reports from vehicles, the system incrementally derives 1) statistics for detecting directional traffic congestions and 2) model parameters for a time-inhomogeneous, Markov jump process that is used to predict the likelihood that a given vehicle will encounter a detected directional congestion within the notification horizon. A simple but efficient SQL-based prototype implementation of the system that can naturally be ported to Big Data processing frameworks is also explained in detail. Empirical evaluations on millions of object trajectories show that 1) the proposed movement model captures the topology of the underlying road network space and the directional aspects of movement on it, 2) the congestion notification accuracy of the system is superior to a linear movement model based system, and 3) the prototype implementation of the system (i) scales linearly with its input load, notification horizon and spatio-temporal resolution and (ii) can in real-time process 1.14 million object trajectories.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信