基于特征转换到音素无关子空间的文本无关说话人识别

Haoze Lu, H. Okamoto, M. Nishida, Y. Horiuchi, S. Kuroiwa
{"title":"基于特征转换到音素无关子空间的文本无关说话人识别","authors":"Haoze Lu, H. Okamoto, M. Nishida, Y. Horiuchi, S. Kuroiwa","doi":"10.1109/ICCT.2008.4716204","DOIUrl":null,"url":null,"abstract":"In text-independent (TI) speaker identification, the variation of phonetic information strongly affects the performance of speaker identification. If this phonetic information in his/her speech data can be suppressed, a robust TI speaker identification system will be realized by using speech features having less phonetic information. In this paper, we propose a TI speaker identification method that suppresses the phonetic information by a subspace method, under the assumption that a subspace with large variance in the speech feature space is a ldquophoneme-dependent subspacerdquo and a complementary subspace of it is a ldquophoneme-independent subspacerdquo. Principal Component Analysis (PCA) is utilized to construct these subspaces. We carried out GMM-based speaker identification experiments using both a new feature vector of the proposed method and the conventional MFCC. As a result, the proposed method reduced the identification error rate by 21% compared with the conventional MFCC.","PeriodicalId":259577,"journal":{"name":"2008 11th IEEE International Conference on Communication Technology","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Text-independent speaker identification based on feature transformation to phoneme-independent subspace\",\"authors\":\"Haoze Lu, H. Okamoto, M. Nishida, Y. Horiuchi, S. Kuroiwa\",\"doi\":\"10.1109/ICCT.2008.4716204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In text-independent (TI) speaker identification, the variation of phonetic information strongly affects the performance of speaker identification. If this phonetic information in his/her speech data can be suppressed, a robust TI speaker identification system will be realized by using speech features having less phonetic information. In this paper, we propose a TI speaker identification method that suppresses the phonetic information by a subspace method, under the assumption that a subspace with large variance in the speech feature space is a ldquophoneme-dependent subspacerdquo and a complementary subspace of it is a ldquophoneme-independent subspacerdquo. Principal Component Analysis (PCA) is utilized to construct these subspaces. We carried out GMM-based speaker identification experiments using both a new feature vector of the proposed method and the conventional MFCC. As a result, the proposed method reduced the identification error rate by 21% compared with the conventional MFCC.\",\"PeriodicalId\":259577,\"journal\":{\"name\":\"2008 11th IEEE International Conference on Communication Technology\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th IEEE International Conference on Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2008.4716204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Conference on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2008.4716204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在不依赖文本的说话人识别中,语音信息的变化严重影响说话人识别的效果。如果语音数据中的语音信息可以被抑制,则可以利用语音信息较少的语音特征实现鲁棒TI说话人识别系统。本文提出了一种用子空间方法对语音信息进行抑制的TI说话人识别方法,该方法假设语音特征空间中方差较大的子空间是依赖于语音的子空间,其互补子空间是依赖于语音的子空间。利用主成分分析(PCA)构造这些子空间。我们使用该方法的新特征向量和传统的MFCC进行了基于gmm的说话人识别实验。结果表明,与传统的MFCC相比,该方法的识别错误率降低了21%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Text-independent speaker identification based on feature transformation to phoneme-independent subspace
In text-independent (TI) speaker identification, the variation of phonetic information strongly affects the performance of speaker identification. If this phonetic information in his/her speech data can be suppressed, a robust TI speaker identification system will be realized by using speech features having less phonetic information. In this paper, we propose a TI speaker identification method that suppresses the phonetic information by a subspace method, under the assumption that a subspace with large variance in the speech feature space is a ldquophoneme-dependent subspacerdquo and a complementary subspace of it is a ldquophoneme-independent subspacerdquo. Principal Component Analysis (PCA) is utilized to construct these subspaces. We carried out GMM-based speaker identification experiments using both a new feature vector of the proposed method and the conventional MFCC. As a result, the proposed method reduced the identification error rate by 21% compared with the conventional MFCC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信