{"title":"考虑任务轮廓和不确定性的单相并网光伏微逆变器可靠性评估","authors":"M. Zare, M. Mohamadian, Huai Wang, F. Blaabjerg","doi":"10.1109/PEDSTC.2017.7910355","DOIUrl":null,"url":null,"abstract":"Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar irritation of two different places on the microinverter lifetime is studied.","PeriodicalId":414828,"journal":{"name":"2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties\",\"authors\":\"M. Zare, M. Mohamadian, Huai Wang, F. Blaabjerg\",\"doi\":\"10.1109/PEDSTC.2017.7910355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar irritation of two different places on the microinverter lifetime is studied.\",\"PeriodicalId\":414828,\"journal\":{\"name\":\"2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PEDSTC.2017.7910355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDSTC.2017.7910355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability assessment of single-phase grid-connected PV microinverters considering mission profile and uncertainties
Microinverters usually connect a PV panel to a Single-phase power grid. In such system, the input power is constant while the output power oscillates twice the line frequency. Thus, the input and output power differences should be stored in a storage component, which is typically an electrolytic capacitor. However, electrolytic capacitors are usually blamed for their short lifetime. Recently, some active power decoupling methods are introduced in the literature which can takes advantage of high reliable film capacitors. However, some extra switches and diodes are added to the microinverter which can influence the microinverter lifetime. This paper investigates the microinverter reliability according to mission profile where it is installed. To get more accurate results, uncertainties in both lifetime model and manufacturing process are considered. The effect of ambient temperature and solar irritation of two different places on the microinverter lifetime is studied.