真实金相图像的自动模式分类

V. Zeljkovic, P. Praks, R. Vincelette, C. Tameze, L. Válek
{"title":"真实金相图像的自动模式分类","authors":"V. Zeljkovic, P. Praks, R. Vincelette, C. Tameze, L. Válek","doi":"10.1109/IAS.2009.5324864","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of automatic pattern classification in real metallographic images from the steel plant ArcelorMittal Ostrava plc (Ostrava, Czech Republic). Images of manufactured metal plates contain dark dots, i.e. imperfections. We monitor the process quality in the steel plant by determining automatically the number and sizes of these dots which represent plates' imperfections. The proposed algorithm segments the area of plates that contains dots, identifies rows of pixels that contain them, marks and counts them. The obtained results are promising and confirm that the proposed algorithm should serve as the foundation for future research in this area.","PeriodicalId":178685,"journal":{"name":"2009 IEEE Industry Applications Society Annual Meeting","volume":"81 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic Pattern Classification of Real Metallographic Images\",\"authors\":\"V. Zeljkovic, P. Praks, R. Vincelette, C. Tameze, L. Válek\",\"doi\":\"10.1109/IAS.2009.5324864\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of automatic pattern classification in real metallographic images from the steel plant ArcelorMittal Ostrava plc (Ostrava, Czech Republic). Images of manufactured metal plates contain dark dots, i.e. imperfections. We monitor the process quality in the steel plant by determining automatically the number and sizes of these dots which represent plates' imperfections. The proposed algorithm segments the area of plates that contains dots, identifies rows of pixels that contain them, marks and counts them. The obtained results are promising and confirm that the proposed algorithm should serve as the foundation for future research in this area.\",\"PeriodicalId\":178685,\"journal\":{\"name\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"81 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS.2009.5324864\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2009.5324864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文研究了ArcelorMittal Ostrava plc (Ostrava, Czech Republic)钢厂真实金相图像的自动模式分类问题。人造金属板的图像包含黑点,即缺陷。我们通过自动确定这些代表钢板缺陷的点的数量和大小来监控钢厂的工艺质量。该算法对包含点的平板区域进行分割,识别包含点的像素行,对其进行标记和计数。得到的结果是有希望的,并证实了该算法可以作为该领域未来研究的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Pattern Classification of Real Metallographic Images
This paper addresses the problem of automatic pattern classification in real metallographic images from the steel plant ArcelorMittal Ostrava plc (Ostrava, Czech Republic). Images of manufactured metal plates contain dark dots, i.e. imperfections. We monitor the process quality in the steel plant by determining automatically the number and sizes of these dots which represent plates' imperfections. The proposed algorithm segments the area of plates that contains dots, identifies rows of pixels that contain them, marks and counts them. The obtained results are promising and confirm that the proposed algorithm should serve as the foundation for future research in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信