Kisoo Kim, Kyung-Won Jang, Hyun-Kyung Kim, Sue Bean Cho, Ki-Hun Jeong
{"title":"生物学启发的口腔内多功能牙科成像相机","authors":"Kisoo Kim, Kyung-Won Jang, Hyun-Kyung Kim, Sue Bean Cho, Ki-Hun Jeong","doi":"10.1117/1.JOM.2.3.031202","DOIUrl":null,"url":null,"abstract":"Abstract. Biological vision offers intriguing inspiration for functional features in imaging systems with small form factors. We report biologically inspired intraoral camera (BIOC) for assorted dental imaging. This fully packaged BIOC features a convex-concave lens, inverted microlens arrays (iMLAs), LED module, and a single CMOS image sensor on a flexible printed circuit board in a handpiece holder. The iMLAs also collect light from wide angles by mounting the convex-concave lens to increase the viewing angle. The clinical trials have been successfully conducted for real-time and multifunctional intraoral monitoring of human teeth, including infinite depth of field, close-up, wide field-of-view, three-dimensional, and autofluorescence imaging. This biomedical camera provides insights for functional imaging not only in dental applications but also in surgical robots and endoscopy applications.","PeriodicalId":127363,"journal":{"name":"Journal of Optical Microsystems","volume":"182 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Biologically inspired intraoral camera for multifunctional dental imaging\",\"authors\":\"Kisoo Kim, Kyung-Won Jang, Hyun-Kyung Kim, Sue Bean Cho, Ki-Hun Jeong\",\"doi\":\"10.1117/1.JOM.2.3.031202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Biological vision offers intriguing inspiration for functional features in imaging systems with small form factors. We report biologically inspired intraoral camera (BIOC) for assorted dental imaging. This fully packaged BIOC features a convex-concave lens, inverted microlens arrays (iMLAs), LED module, and a single CMOS image sensor on a flexible printed circuit board in a handpiece holder. The iMLAs also collect light from wide angles by mounting the convex-concave lens to increase the viewing angle. The clinical trials have been successfully conducted for real-time and multifunctional intraoral monitoring of human teeth, including infinite depth of field, close-up, wide field-of-view, three-dimensional, and autofluorescence imaging. This biomedical camera provides insights for functional imaging not only in dental applications but also in surgical robots and endoscopy applications.\",\"PeriodicalId\":127363,\"journal\":{\"name\":\"Journal of Optical Microsystems\",\"volume\":\"182 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Optical Microsystems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JOM.2.3.031202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Microsystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/1.JOM.2.3.031202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Biologically inspired intraoral camera for multifunctional dental imaging
Abstract. Biological vision offers intriguing inspiration for functional features in imaging systems with small form factors. We report biologically inspired intraoral camera (BIOC) for assorted dental imaging. This fully packaged BIOC features a convex-concave lens, inverted microlens arrays (iMLAs), LED module, and a single CMOS image sensor on a flexible printed circuit board in a handpiece holder. The iMLAs also collect light from wide angles by mounting the convex-concave lens to increase the viewing angle. The clinical trials have been successfully conducted for real-time and multifunctional intraoral monitoring of human teeth, including infinite depth of field, close-up, wide field-of-view, three-dimensional, and autofluorescence imaging. This biomedical camera provides insights for functional imaging not only in dental applications but also in surgical robots and endoscopy applications.