{"title":"时间序列条件独立性的非参数检验","authors":"Xiaojun Song, Haoyu Wei","doi":"10.2139/ssrn.3939952","DOIUrl":null,"url":null,"abstract":"We propose consistent nonparametric tests of conditional independence for time series data. Our methods are motivated from the difference between joint conditional cumulative distribution function (CDF) and the product of conditional CDFs. The difference is transformed into a proper conditional moment restriction (CMR), which forms the basis for our testing procedure. Our test statistics are then constructed using the integrated moment restrictions that are equivalent to the CMR. We establish the asymptotic behavior of the test statistics under the null, the alternative, and the sequence of local alternatives converging to conditional independence at the parametric rate. Our tests are implemented with the assistance of a multiplier bootstrap. Monte Carlo simulations are conducted to evaluate the finite sample performance of the proposed tests. We apply our tests to examine the predictability of equity risk premium using variance risk premium for different horizons and find that there exist various degrees of nonlinear predictability at mid-run and long-run horizons.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"126 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonparametric Tests of Conditional Independence for Time Series\",\"authors\":\"Xiaojun Song, Haoyu Wei\",\"doi\":\"10.2139/ssrn.3939952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose consistent nonparametric tests of conditional independence for time series data. Our methods are motivated from the difference between joint conditional cumulative distribution function (CDF) and the product of conditional CDFs. The difference is transformed into a proper conditional moment restriction (CMR), which forms the basis for our testing procedure. Our test statistics are then constructed using the integrated moment restrictions that are equivalent to the CMR. We establish the asymptotic behavior of the test statistics under the null, the alternative, and the sequence of local alternatives converging to conditional independence at the parametric rate. Our tests are implemented with the assistance of a multiplier bootstrap. Monte Carlo simulations are conducted to evaluate the finite sample performance of the proposed tests. We apply our tests to examine the predictability of equity risk premium using variance risk premium for different horizons and find that there exist various degrees of nonlinear predictability at mid-run and long-run horizons.\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"126 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3939952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3939952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nonparametric Tests of Conditional Independence for Time Series
We propose consistent nonparametric tests of conditional independence for time series data. Our methods are motivated from the difference between joint conditional cumulative distribution function (CDF) and the product of conditional CDFs. The difference is transformed into a proper conditional moment restriction (CMR), which forms the basis for our testing procedure. Our test statistics are then constructed using the integrated moment restrictions that are equivalent to the CMR. We establish the asymptotic behavior of the test statistics under the null, the alternative, and the sequence of local alternatives converging to conditional independence at the parametric rate. Our tests are implemented with the assistance of a multiplier bootstrap. Monte Carlo simulations are conducted to evaluate the finite sample performance of the proposed tests. We apply our tests to examine the predictability of equity risk premium using variance risk premium for different horizons and find that there exist various degrees of nonlinear predictability at mid-run and long-run horizons.