基于多小波的立体对应匹配

P. B. Zadeh, C. Serdean
{"title":"基于多小波的立体对应匹配","authors":"P. B. Zadeh, C. Serdean","doi":"10.1109/ICDT.2010.37","DOIUrl":null,"url":null,"abstract":"this paper presents a novel multiwavelet-based stereo correspondence matching technique. A multiwavelet transform is first applied to a pair of stereo images to decorrelate the images into a number of approximation (baseband) and detail subbands. Information in the basebands is less sensitive to shift variability of the multiwavelet transform. Basebands of each input image carry different spectral content of the image. Therefore, using the basebands to generate the disparity map is likely to produce more accurate results. A global error energy minimization technique is employed to generate a disparity map for each baseband of the stereo pairs. Information in the resulting disparity maps is then combined using a Fuzzy algorithm to construct a dense disparity map. A filtering process is finally applied to smooth the disparity map and reduce its erroneous matches. Middlebury stereo test images are used to generate experimental results. Results show that the proposed technique produces smoother disparity maps with less mismatch errors compared to applying the same global error energy minimization technique to wavelet transformed image data.","PeriodicalId":322589,"journal":{"name":"2010 Fifth International Conference on Digital Telecommunications","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Stereo Correspondence Matching Using Multiwavelets\",\"authors\":\"P. B. Zadeh, C. Serdean\",\"doi\":\"10.1109/ICDT.2010.37\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"this paper presents a novel multiwavelet-based stereo correspondence matching technique. A multiwavelet transform is first applied to a pair of stereo images to decorrelate the images into a number of approximation (baseband) and detail subbands. Information in the basebands is less sensitive to shift variability of the multiwavelet transform. Basebands of each input image carry different spectral content of the image. Therefore, using the basebands to generate the disparity map is likely to produce more accurate results. A global error energy minimization technique is employed to generate a disparity map for each baseband of the stereo pairs. Information in the resulting disparity maps is then combined using a Fuzzy algorithm to construct a dense disparity map. A filtering process is finally applied to smooth the disparity map and reduce its erroneous matches. Middlebury stereo test images are used to generate experimental results. Results show that the proposed technique produces smoother disparity maps with less mismatch errors compared to applying the same global error energy minimization technique to wavelet transformed image data.\",\"PeriodicalId\":322589,\"journal\":{\"name\":\"2010 Fifth International Conference on Digital Telecommunications\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Fifth International Conference on Digital Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDT.2010.37\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Fifth International Conference on Digital Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDT.2010.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种新的基于多小波的立体对应匹配技术。首先对一对立体图像进行多小波变换,将图像分解为多个近似(基带)和细节子带。基带中的信息对多小波变换的移位变异性不太敏感。每个输入图像的基带携带不同的图像光谱含量。因此,使用基带生成视差图可能会产生更准确的结果。采用全局误差能量最小化技术对每个基带生成视差图。然后使用模糊算法将所得视差图中的信息组合在一起,以构建密集的视差图。最后对视差图进行滤波处理,以平滑视差图,减少视差图的错误匹配。使用Middlebury立体测试图像生成实验结果。结果表明,与小波变换图像数据采用相同的全局误差能量最小化技术相比,该方法产生的视差图更平滑,失配误差更小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereo Correspondence Matching Using Multiwavelets
this paper presents a novel multiwavelet-based stereo correspondence matching technique. A multiwavelet transform is first applied to a pair of stereo images to decorrelate the images into a number of approximation (baseband) and detail subbands. Information in the basebands is less sensitive to shift variability of the multiwavelet transform. Basebands of each input image carry different spectral content of the image. Therefore, using the basebands to generate the disparity map is likely to produce more accurate results. A global error energy minimization technique is employed to generate a disparity map for each baseband of the stereo pairs. Information in the resulting disparity maps is then combined using a Fuzzy algorithm to construct a dense disparity map. A filtering process is finally applied to smooth the disparity map and reduce its erroneous matches. Middlebury stereo test images are used to generate experimental results. Results show that the proposed technique produces smoother disparity maps with less mismatch errors compared to applying the same global error energy minimization technique to wavelet transformed image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信