一种利用自适应均值移位和归一化分割的彩色图像分割方法

V. Shibu, Philomina Simon
{"title":"一种利用自适应均值移位和归一化分割的彩色图像分割方法","authors":"V. Shibu, Philomina Simon","doi":"10.1109/ICOAC.2011.6165194","DOIUrl":null,"url":null,"abstract":"In the proposed method, a combined approach of Adaptive Mean Shift and Normalized Cuts is used for clustering the images. In this method, both color and gray scale images can be segmented effectively and it requires less computational complexity. In the first stage, the image is divided into different segments using Adaptive Mean Shift algorithm and the segments generated are labeled and the labeled segments are represented as nodes in a graph. The result obtained by applying the Adaptive Mean Shift algorithm is given to the normalized cut method for grouping the clustered segments. Experimental result shows that the proposed method gives better performance in terms of segments than other methods when tested with color and gray scale natural images.","PeriodicalId":369712,"journal":{"name":"2011 Third International Conference on Advanced Computing","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient method for color image segmentation using adaptive mean shift and normalized cuts\",\"authors\":\"V. Shibu, Philomina Simon\",\"doi\":\"10.1109/ICOAC.2011.6165194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the proposed method, a combined approach of Adaptive Mean Shift and Normalized Cuts is used for clustering the images. In this method, both color and gray scale images can be segmented effectively and it requires less computational complexity. In the first stage, the image is divided into different segments using Adaptive Mean Shift algorithm and the segments generated are labeled and the labeled segments are represented as nodes in a graph. The result obtained by applying the Adaptive Mean Shift algorithm is given to the normalized cut method for grouping the clustered segments. Experimental result shows that the proposed method gives better performance in terms of segments than other methods when tested with color and gray scale natural images.\",\"PeriodicalId\":369712,\"journal\":{\"name\":\"2011 Third International Conference on Advanced Computing\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Third International Conference on Advanced Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOAC.2011.6165194\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Third International Conference on Advanced Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOAC.2011.6165194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

该方法采用自适应均值漂移和归一化分割相结合的方法对图像进行聚类。该方法能有效分割彩色图像和灰度图像,且计算复杂度较低。在第一阶段,使用Adaptive Mean Shift算法将图像分割成不同的片段,并对生成的片段进行标记,将标记的片段表示为图中的节点。将自适应Mean Shift算法应用于归一化切割方法对聚类段进行分组。实验结果表明,该方法对彩色和灰度自然图像的分割效果优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient method for color image segmentation using adaptive mean shift and normalized cuts
In the proposed method, a combined approach of Adaptive Mean Shift and Normalized Cuts is used for clustering the images. In this method, both color and gray scale images can be segmented effectively and it requires less computational complexity. In the first stage, the image is divided into different segments using Adaptive Mean Shift algorithm and the segments generated are labeled and the labeled segments are represented as nodes in a graph. The result obtained by applying the Adaptive Mean Shift algorithm is given to the normalized cut method for grouping the clustered segments. Experimental result shows that the proposed method gives better performance in terms of segments than other methods when tested with color and gray scale natural images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信