{"title":"高斯窃听通道中偏斜晶格与正交晶格的比较","authors":"Alex Karrila, C. Hollanti","doi":"10.1109/ITW.2015.7133106","DOIUrl":null,"url":null,"abstract":"We consider lattice coset-coded transmissions over a wiretap channel with additive white Gaussian noise (AWGN). Examining a function that can be interpreted as either the legitimate receiver's error probability or the eavesdropper's correct decision probability, we rigorously show that, albeit offering simple bit labeling, orthogonal nested lattices are suboptimal for coset coding in terms of both the legitimate receiver's and the eavesdropper's probabilities.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A comparison of skewed and orthogonal lattices in Gaussian wiretap channels\",\"authors\":\"Alex Karrila, C. Hollanti\",\"doi\":\"10.1109/ITW.2015.7133106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider lattice coset-coded transmissions over a wiretap channel with additive white Gaussian noise (AWGN). Examining a function that can be interpreted as either the legitimate receiver's error probability or the eavesdropper's correct decision probability, we rigorously show that, albeit offering simple bit labeling, orthogonal nested lattices are suboptimal for coset coding in terms of both the legitimate receiver's and the eavesdropper's probabilities.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparison of skewed and orthogonal lattices in Gaussian wiretap channels
We consider lattice coset-coded transmissions over a wiretap channel with additive white Gaussian noise (AWGN). Examining a function that can be interpreted as either the legitimate receiver's error probability or the eavesdropper's correct decision probability, we rigorously show that, albeit offering simple bit labeling, orthogonal nested lattices are suboptimal for coset coding in terms of both the legitimate receiver's and the eavesdropper's probabilities.