深度融合:异构感官数据融合的深度学习框架

Hongfei Xue, Wenjun Jiang, Chenglin Miao, Ye Yuan, Fenglong Ma, Xin Ma, Yijiang Wang, Shuochao Yao, Wenyao Xu, Aidong Zhang, Lu Su
{"title":"深度融合:异构感官数据融合的深度学习框架","authors":"Hongfei Xue, Wenjun Jiang, Chenglin Miao, Ye Yuan, Fenglong Ma, Xin Ma, Yijiang Wang, Shuochao Yao, Wenyao Xu, Aidong Zhang, Lu Su","doi":"10.1145/3323679.3326513","DOIUrl":null,"url":null,"abstract":"In recent years, significant research efforts have been spent towards building intelligent and user-friendly IoT systems to enable a new generation of applications capable of performing complex sensing and recognition tasks. In many of such applications, there are usually multiple different sensors monitoring the same object. Each of these sensors can be regarded as an information source and provides us a unique \"view\" of the observed object. Intuitively, if we can combine the complementary information carried by multiple sensors, we will be able to improve the sensing performance. Towards this end, we propose DeepFusion, a unified multi-sensor deep learning framework, to learn informative representations of heterogeneous sensory data. DeepFusion can combine different sensors' information weighted by the quality of their data and incorporate cross-sensor correlations, and thus can benefit a wide spectrum of IoT applications. To evaluate the proposed DeepFusion model, we set up two real-world human activity recognition testbeds using commercialized wearable and wireless sensing devices. Experiment results show that DeepFusion can outperform the state-of-the-art human activity recognition methods.","PeriodicalId":205641,"journal":{"name":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"DeepFusion: A Deep Learning Framework for the Fusion of Heterogeneous Sensory Data\",\"authors\":\"Hongfei Xue, Wenjun Jiang, Chenglin Miao, Ye Yuan, Fenglong Ma, Xin Ma, Yijiang Wang, Shuochao Yao, Wenyao Xu, Aidong Zhang, Lu Su\",\"doi\":\"10.1145/3323679.3326513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, significant research efforts have been spent towards building intelligent and user-friendly IoT systems to enable a new generation of applications capable of performing complex sensing and recognition tasks. In many of such applications, there are usually multiple different sensors monitoring the same object. Each of these sensors can be regarded as an information source and provides us a unique \\\"view\\\" of the observed object. Intuitively, if we can combine the complementary information carried by multiple sensors, we will be able to improve the sensing performance. Towards this end, we propose DeepFusion, a unified multi-sensor deep learning framework, to learn informative representations of heterogeneous sensory data. DeepFusion can combine different sensors' information weighted by the quality of their data and incorporate cross-sensor correlations, and thus can benefit a wide spectrum of IoT applications. To evaluate the proposed DeepFusion model, we set up two real-world human activity recognition testbeds using commercialized wearable and wireless sensing devices. Experiment results show that DeepFusion can outperform the state-of-the-art human activity recognition methods.\",\"PeriodicalId\":205641,\"journal\":{\"name\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3323679.3326513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323679.3326513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

近年来,人们在构建智能和用户友好的物联网系统方面投入了大量研究工作,以实现能够执行复杂传感和识别任务的新一代应用。在许多这样的应用中,通常有多个不同的传感器监视同一个对象。这些传感器中的每一个都可以被视为一个信息源,为我们提供了观察对象的独特“视图”。直观地说,如果我们能将多个传感器携带的互补信息结合起来,就能提高传感性能。为此,我们提出了一个统一的多传感器深度学习框架DeepFusion,以学习异构感官数据的信息表示。DeepFusion可以结合不同传感器的数据质量加权信息,并结合跨传感器的相关性,因此可以受益于广泛的物联网应用。为了评估提出的DeepFusion模型,我们使用商用可穿戴和无线传感设备建立了两个真实世界的人体活动识别试验台。实验结果表明,DeepFusion可以优于最先进的人类活动识别方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DeepFusion: A Deep Learning Framework for the Fusion of Heterogeneous Sensory Data
In recent years, significant research efforts have been spent towards building intelligent and user-friendly IoT systems to enable a new generation of applications capable of performing complex sensing and recognition tasks. In many of such applications, there are usually multiple different sensors monitoring the same object. Each of these sensors can be regarded as an information source and provides us a unique "view" of the observed object. Intuitively, if we can combine the complementary information carried by multiple sensors, we will be able to improve the sensing performance. Towards this end, we propose DeepFusion, a unified multi-sensor deep learning framework, to learn informative representations of heterogeneous sensory data. DeepFusion can combine different sensors' information weighted by the quality of their data and incorporate cross-sensor correlations, and thus can benefit a wide spectrum of IoT applications. To evaluate the proposed DeepFusion model, we set up two real-world human activity recognition testbeds using commercialized wearable and wireless sensing devices. Experiment results show that DeepFusion can outperform the state-of-the-art human activity recognition methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信