B. E. Nussbaum, Andrew J. Pizzimenti, Navin B. Lingaraju, Hsuan-Hao Lu, J. Lukens
{"title":"集成量子频率处理器建模","authors":"B. E. Nussbaum, Andrew J. Pizzimenti, Navin B. Lingaraju, Hsuan-Hao Lu, J. Lukens","doi":"10.1109/ipc53466.2022.9975677","DOIUrl":null,"url":null,"abstract":"The quantum frequency processor (QFP) enables universal quantum gates, but demonstrations so far have employed discrete components only. We introduce a QFP model for microring resonator-based pulse shapers, analyzing Hadamard gates as examples. Extendable to any material, our model furnishes valuable tools for integrated QFPs.","PeriodicalId":202839,"journal":{"name":"2022 IEEE Photonics Conference (IPC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling integrated quantum frequency processors\",\"authors\":\"B. E. Nussbaum, Andrew J. Pizzimenti, Navin B. Lingaraju, Hsuan-Hao Lu, J. Lukens\",\"doi\":\"10.1109/ipc53466.2022.9975677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quantum frequency processor (QFP) enables universal quantum gates, but demonstrations so far have employed discrete components only. We introduce a QFP model for microring resonator-based pulse shapers, analyzing Hadamard gates as examples. Extendable to any material, our model furnishes valuable tools for integrated QFPs.\",\"PeriodicalId\":202839,\"journal\":{\"name\":\"2022 IEEE Photonics Conference (IPC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Photonics Conference (IPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ipc53466.2022.9975677\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Photonics Conference (IPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ipc53466.2022.9975677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The quantum frequency processor (QFP) enables universal quantum gates, but demonstrations so far have employed discrete components only. We introduce a QFP model for microring resonator-based pulse shapers, analyzing Hadamard gates as examples. Extendable to any material, our model furnishes valuable tools for integrated QFPs.