基于深度学习的番茄作物病害检测系统

M. Afify, Mohamed Loey, A. Elsawy
{"title":"基于深度学习的番茄作物病害检测系统","authors":"M. Afify, Mohamed Loey, A. Elsawy","doi":"10.4018/ijssci.304439","DOIUrl":null,"url":null,"abstract":"The tomato crop is a strategic crop in the Egyptian market with high commercial value and large production. However, tomato diseases can cause huge losses and reduce yields. This work aims to use deep learning to construct a robust intelligent system for detecting tomato crop diseases to help farmers and agricultural workers by comparing the performance of four different recent state-of-the-art deep learning models to recognize 9 different diseases of tomatoes. In order to maximize the system's generalization ability, data augmentation, fine-tuning, label smoothing, and dataset enrichment techniques were investigated. The best-performing model achieved an average accuracy of 99.12% with a hold-out test set from the original dataset and an accuracy of 71.43% with new images downloaded from the Internet that had never been seen before. Training and testing were performed on a computer, and the final model was deployed on a smartphone for real-time on-site disease classification.","PeriodicalId":432255,"journal":{"name":"Int. J. Softw. Sci. Comput. Intell.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Robust Intelligent System for Detecting Tomato Crop Diseases Using Deep Learning\",\"authors\":\"M. Afify, Mohamed Loey, A. Elsawy\",\"doi\":\"10.4018/ijssci.304439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tomato crop is a strategic crop in the Egyptian market with high commercial value and large production. However, tomato diseases can cause huge losses and reduce yields. This work aims to use deep learning to construct a robust intelligent system for detecting tomato crop diseases to help farmers and agricultural workers by comparing the performance of four different recent state-of-the-art deep learning models to recognize 9 different diseases of tomatoes. In order to maximize the system's generalization ability, data augmentation, fine-tuning, label smoothing, and dataset enrichment techniques were investigated. The best-performing model achieved an average accuracy of 99.12% with a hold-out test set from the original dataset and an accuracy of 71.43% with new images downloaded from the Internet that had never been seen before. Training and testing were performed on a computer, and the final model was deployed on a smartphone for real-time on-site disease classification.\",\"PeriodicalId\":432255,\"journal\":{\"name\":\"Int. J. Softw. Sci. Comput. Intell.\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Softw. Sci. Comput. Intell.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijssci.304439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Softw. Sci. Comput. Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijssci.304439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

番茄作物是埃及市场的战略作物,具有很高的商业价值和大量的产量。然而,番茄病害会造成巨大损失并降低产量。本工作旨在通过比较四种不同的最新最先进的深度学习模型识别9种不同的番茄疾病的性能,利用深度学习构建一个强大的番茄作物病害检测智能系统,以帮助农民和农业工人。为了使系统的泛化能力最大化,研究了数据增强、微调、标签平滑和数据集丰富等技术。表现最好的模型在原始数据集的保留测试集上实现了99.12%的平均准确率,在从互联网上下载的从未见过的新图像上实现了71.43%的准确率。训练和测试在计算机上进行,最终模型部署在智能手机上,用于实时现场疾病分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Intelligent System for Detecting Tomato Crop Diseases Using Deep Learning
The tomato crop is a strategic crop in the Egyptian market with high commercial value and large production. However, tomato diseases can cause huge losses and reduce yields. This work aims to use deep learning to construct a robust intelligent system for detecting tomato crop diseases to help farmers and agricultural workers by comparing the performance of four different recent state-of-the-art deep learning models to recognize 9 different diseases of tomatoes. In order to maximize the system's generalization ability, data augmentation, fine-tuning, label smoothing, and dataset enrichment techniques were investigated. The best-performing model achieved an average accuracy of 99.12% with a hold-out test set from the original dataset and an accuracy of 71.43% with new images downloaded from the Internet that had never been seen before. Training and testing were performed on a computer, and the final model was deployed on a smartphone for real-time on-site disease classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信