基于qos的5G网络资源优化利用绿色通信策略

G. Prasad, Deepak Mishra, A. Hossain
{"title":"基于qos的5G网络资源优化利用绿色通信策略","authors":"G. Prasad, Deepak Mishra, A. Hossain","doi":"10.4018/978-1-5225-7570-2.CH007","DOIUrl":null,"url":null,"abstract":"With increase in demand of data traffic with no compromise on the underlying quality of service (QoS), the coexistence problem arises due to high electricity consumption by the network architecture which results in a huge CO2 emission and thereby causing various health hazards. Efficient utilization of the resources can reduce the cost of power consumption which will increase the economy-characteristics of the network. The resource consumption can be reduced under an intelligent technology-neutral policies which optimizes the deployment of the network architecture along with their transmit power paving the way for fifth generation (5G) in green wireless communications. On another front, the ultra-dense deployment of the small cells can increase the frequency reuse factor as well as help in reducing the energy consumption. This chapter designs the energy efficient networks while satisfying the underlying QoS by joint optimization of available resources depending on the interoperability challenges in terrestrial, underwater acoustic, and free space optical (FSO) communications.","PeriodicalId":298363,"journal":{"name":"Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"QoS-Aware Green Communication Strategies for Optimal Utilization of Resources in 5G Networks\",\"authors\":\"G. Prasad, Deepak Mishra, A. Hossain\",\"doi\":\"10.4018/978-1-5225-7570-2.CH007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With increase in demand of data traffic with no compromise on the underlying quality of service (QoS), the coexistence problem arises due to high electricity consumption by the network architecture which results in a huge CO2 emission and thereby causing various health hazards. Efficient utilization of the resources can reduce the cost of power consumption which will increase the economy-characteristics of the network. The resource consumption can be reduced under an intelligent technology-neutral policies which optimizes the deployment of the network architecture along with their transmit power paving the way for fifth generation (5G) in green wireless communications. On another front, the ultra-dense deployment of the small cells can increase the frequency reuse factor as well as help in reducing the energy consumption. This chapter designs the energy efficient networks while satisfying the underlying QoS by joint optimization of available resources depending on the interoperability challenges in terrestrial, underwater acoustic, and free space optical (FSO) communications.\",\"PeriodicalId\":298363,\"journal\":{\"name\":\"Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-5225-7570-2.CH007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Anthology on Developing and Optimizing 5G Networks and the Impact on Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7570-2.CH007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在不降低底层服务质量的情况下,随着数据流量需求的增加,由于网络架构的高功耗导致大量的CO2排放,从而产生了共存问题,从而对健康造成了各种危害。资源的有效利用可以降低电力消耗成本,从而提高电网的经济性。通过优化网络架构部署和发射功率的智能技术中立政策,可以减少资源消耗,为绿色无线通信的第五代(5G)铺平道路。另一方面,小型蜂窝的超密集部署可以提高频率重复利用率,并有助于降低能耗。本章设计了节能网络,同时根据地面、水声和自由空间光(FSO)通信中的互操作性挑战,通过联合优化可用资源来满足底层QoS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QoS-Aware Green Communication Strategies for Optimal Utilization of Resources in 5G Networks
With increase in demand of data traffic with no compromise on the underlying quality of service (QoS), the coexistence problem arises due to high electricity consumption by the network architecture which results in a huge CO2 emission and thereby causing various health hazards. Efficient utilization of the resources can reduce the cost of power consumption which will increase the economy-characteristics of the network. The resource consumption can be reduced under an intelligent technology-neutral policies which optimizes the deployment of the network architecture along with their transmit power paving the way for fifth generation (5G) in green wireless communications. On another front, the ultra-dense deployment of the small cells can increase the frequency reuse factor as well as help in reducing the energy consumption. This chapter designs the energy efficient networks while satisfying the underlying QoS by joint optimization of available resources depending on the interoperability challenges in terrestrial, underwater acoustic, and free space optical (FSO) communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信