序列到序列网络时间序列的动态预测长度

Mark Harmon, D. Klabjan
{"title":"序列到序列网络时间序列的动态预测长度","authors":"Mark Harmon, D. Klabjan","doi":"10.1145/3383455.3422533","DOIUrl":null,"url":null,"abstract":"Recurrent neural networks and sequence to sequence models require a predetermined length for prediction output length. Our model addresses this by allowing the network to predict a variable length output in inference. A new loss function with a tailored gradient computation is developed that trades off prediction accuracy and output length. The model utilizes a function to determine whether a particular output at a time should be evaluated or not given a predetermined threshold. We evaluate the model on the problem of predicting the prices of securities. We find that the model makes longer predictions for more stable securities and it naturally balances prediction accuracy and length.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Dynamic prediction length for time series with sequence to sequence network\",\"authors\":\"Mark Harmon, D. Klabjan\",\"doi\":\"10.1145/3383455.3422533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recurrent neural networks and sequence to sequence models require a predetermined length for prediction output length. Our model addresses this by allowing the network to predict a variable length output in inference. A new loss function with a tailored gradient computation is developed that trades off prediction accuracy and output length. The model utilizes a function to determine whether a particular output at a time should be evaluated or not given a predetermined threshold. We evaluate the model on the problem of predicting the prices of securities. We find that the model makes longer predictions for more stable securities and it naturally balances prediction accuracy and length.\",\"PeriodicalId\":447950,\"journal\":{\"name\":\"Proceedings of the First ACM International Conference on AI in Finance\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First ACM International Conference on AI in Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3383455.3422533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

递归神经网络和序列到序列模型需要一个预定的长度来预测输出长度。我们的模型通过允许网络在推理中预测可变长度的输出来解决这个问题。开发了一种新的损失函数,该函数具有定制的梯度计算,可以权衡预测精度和输出长度。该模型利用一个函数来确定某一时刻的特定输出是否应该评估,或者是否应该给定一个预定的阈值。我们在证券价格预测问题上对模型进行了评价。我们发现该模型对更稳定的证券进行了更长的预测,并且很自然地平衡了预测精度和预测长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic prediction length for time series with sequence to sequence network
Recurrent neural networks and sequence to sequence models require a predetermined length for prediction output length. Our model addresses this by allowing the network to predict a variable length output in inference. A new loss function with a tailored gradient computation is developed that trades off prediction accuracy and output length. The model utilizes a function to determine whether a particular output at a time should be evaluated or not given a predetermined threshold. We evaluate the model on the problem of predicting the prices of securities. We find that the model makes longer predictions for more stable securities and it naturally balances prediction accuracy and length.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信