一种具有精确尖刺驱动突触可塑性的分层视觉识别模型

Xiaoliang Xu, Xin Jin, Rui Yan, Xun Cao
{"title":"一种具有精确尖刺驱动突触可塑性的分层视觉识别模型","authors":"Xiaoliang Xu, Xin Jin, Rui Yan, Xun Cao","doi":"10.1109/SSCI.2016.7850251","DOIUrl":null,"url":null,"abstract":"Several conventional methods have been implemented in pattern recognition, but few of them have biological plausibility. This paper mimics the hierarchical visual system and uses the precise-spike-driven (PSD) synaptic plasticity rule to learn. The well-known HMAX model imitates the visual cortex and uses Gabor filter and max pooling to extract features. Compared with the traditional HMAX model, our modified model combines with the characteristics of sparse coding, and retains the features of the image in each orientation. In learning layer, it is an effective preparation for the PSD rule that temporal coding conveys precise spatio-temporal information. The PSD rule is simple and efficient in synaptic adaptation, and calculates directly. The results show our scheme provides a powerful approach for handwritten digit recognition in noisy conditions.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hierarchical visual recognition model with precise-spike-driven synaptic plasticity\",\"authors\":\"Xiaoliang Xu, Xin Jin, Rui Yan, Xun Cao\",\"doi\":\"10.1109/SSCI.2016.7850251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several conventional methods have been implemented in pattern recognition, but few of them have biological plausibility. This paper mimics the hierarchical visual system and uses the precise-spike-driven (PSD) synaptic plasticity rule to learn. The well-known HMAX model imitates the visual cortex and uses Gabor filter and max pooling to extract features. Compared with the traditional HMAX model, our modified model combines with the characteristics of sparse coding, and retains the features of the image in each orientation. In learning layer, it is an effective preparation for the PSD rule that temporal coding conveys precise spatio-temporal information. The PSD rule is simple and efficient in synaptic adaptation, and calculates directly. The results show our scheme provides a powerful approach for handwritten digit recognition in noisy conditions.\",\"PeriodicalId\":120288,\"journal\":{\"name\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI.2016.7850251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7850251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在模式识别中已经实现了几种传统的方法,但很少有方法具有生物学合理性。本文模拟了层次视觉系统,采用精确spike-driven (PSD)突触可塑性规则进行学习。著名的HMAX模型模仿视觉皮层,使用Gabor滤波器和max池来提取特征。与传统的HMAX模型相比,我们的改进模型结合了稀疏编码的特点,在每个方向上都保留了图像的特征。在学习层,时间编码传递精确的时空信息是实现PSD规则的有效准备。PSD规则在突触适应方面具有简单、高效、直接计算的特点。结果表明,该方法为噪声条件下的手写数字识别提供了一种有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hierarchical visual recognition model with precise-spike-driven synaptic plasticity
Several conventional methods have been implemented in pattern recognition, but few of them have biological plausibility. This paper mimics the hierarchical visual system and uses the precise-spike-driven (PSD) synaptic plasticity rule to learn. The well-known HMAX model imitates the visual cortex and uses Gabor filter and max pooling to extract features. Compared with the traditional HMAX model, our modified model combines with the characteristics of sparse coding, and retains the features of the image in each orientation. In learning layer, it is an effective preparation for the PSD rule that temporal coding conveys precise spatio-temporal information. The PSD rule is simple and efficient in synaptic adaptation, and calculates directly. The results show our scheme provides a powerful approach for handwritten digit recognition in noisy conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信