Textout:通过可视化学习检测手机应用中的文本布局错误

Yaohui Wang, Hui Xu, Yangfan Zhou, Michael R. Lyu, Xin Wang
{"title":"Textout:通过可视化学习检测手机应用中的文本布局错误","authors":"Yaohui Wang, Hui Xu, Yangfan Zhou, Michael R. Lyu, Xin Wang","doi":"10.1109/ISSRE.2019.00032","DOIUrl":null,"url":null,"abstract":"Layout bugs commonly exist in mobile apps. Due to the fragmentation issues of smartphones, a layout bug may occur only on particular versions of smartphones. It is quite challenging to detect such bugs for state-of-the-art commercial automated testing platforms, although they can test an app with thousands of different smartphones in parallel. The main reason is that typical layout bugs neither crash an app nor generate any error messages. In this paper, we present our work for detecting text-layout bugs, which account for a large portion of layout bugs. We model text-layout bug detection as a classification problem. This then allows us to address it with sophisticated image processing and machine learning techniques. To this end, we propose an approach which we call Textout. Textout takes screenshots as its input and adopts a specifically-tailored text detection method and a convolutional neural network (CNN) classifier to perform automatic text-layout bug detection. We collect 33,102 text-region images as our training dataset and verify the effectiveness of our tool with 1,481 text-region images collected from real-world apps. Textout achieves an AUC (area under the curve) of 0.956 on the test dataset and shows an acceptable overhead. The dataset is open-source released for follow-up research.","PeriodicalId":254749,"journal":{"name":"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Textout: Detecting Text-Layout Bugs in Mobile Apps via Visualization-Oriented Learning\",\"authors\":\"Yaohui Wang, Hui Xu, Yangfan Zhou, Michael R. Lyu, Xin Wang\",\"doi\":\"10.1109/ISSRE.2019.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Layout bugs commonly exist in mobile apps. Due to the fragmentation issues of smartphones, a layout bug may occur only on particular versions of smartphones. It is quite challenging to detect such bugs for state-of-the-art commercial automated testing platforms, although they can test an app with thousands of different smartphones in parallel. The main reason is that typical layout bugs neither crash an app nor generate any error messages. In this paper, we present our work for detecting text-layout bugs, which account for a large portion of layout bugs. We model text-layout bug detection as a classification problem. This then allows us to address it with sophisticated image processing and machine learning techniques. To this end, we propose an approach which we call Textout. Textout takes screenshots as its input and adopts a specifically-tailored text detection method and a convolutional neural network (CNN) classifier to perform automatic text-layout bug detection. We collect 33,102 text-region images as our training dataset and verify the effectiveness of our tool with 1,481 text-region images collected from real-world apps. Textout achieves an AUC (area under the curve) of 0.956 on the test dataset and shows an acceptable overhead. The dataset is open-source released for follow-up research.\",\"PeriodicalId\":254749,\"journal\":{\"name\":\"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2019.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2019.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

布局错误通常存在于移动应用程序中。由于智能手机的碎片化问题,布局错误可能只发生在特定版本的智能手机上。对于最先进的商业自动化测试平台来说,检测这些漏洞相当具有挑战性,尽管它们可以在数千种不同的智能手机上并行测试应用程序。主要原因是典型的布局bug既不会导致应用崩溃,也不会产生任何错误信息。在本文中,我们介绍了检测文本布局错误的工作,它占布局错误的很大一部分。我们将文本布局错误检测建模为分类问题。这样我们就可以用复杂的图像处理和机器学习技术来解决这个问题。为此,我们提出了一种方法,我们称之为Textout。Textout以截图为输入,采用专门定制的文本检测方法和卷积神经网络(CNN)分类器自动检测文本布局错误。我们收集了33,102个文本区域图像作为我们的训练数据集,并使用从实际应用中收集的1,481个文本区域图像验证了我们的工具的有效性。Textout在测试数据集上实现了0.956的AUC(曲线下面积),并显示出可接受的开销。该数据集是开源的,供后续研究使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Textout: Detecting Text-Layout Bugs in Mobile Apps via Visualization-Oriented Learning
Layout bugs commonly exist in mobile apps. Due to the fragmentation issues of smartphones, a layout bug may occur only on particular versions of smartphones. It is quite challenging to detect such bugs for state-of-the-art commercial automated testing platforms, although they can test an app with thousands of different smartphones in parallel. The main reason is that typical layout bugs neither crash an app nor generate any error messages. In this paper, we present our work for detecting text-layout bugs, which account for a large portion of layout bugs. We model text-layout bug detection as a classification problem. This then allows us to address it with sophisticated image processing and machine learning techniques. To this end, we propose an approach which we call Textout. Textout takes screenshots as its input and adopts a specifically-tailored text detection method and a convolutional neural network (CNN) classifier to perform automatic text-layout bug detection. We collect 33,102 text-region images as our training dataset and verify the effectiveness of our tool with 1,481 text-region images collected from real-world apps. Textout achieves an AUC (area under the curve) of 0.956 on the test dataset and shows an acceptable overhead. The dataset is open-source released for follow-up research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信