Maryam Rezakhani Taleghani, F. Ghasemi, F. Tabandeh
{"title":"表达密码子优化的人干扰素-β基因稳定的中国仓鼠卵巢细胞的建立","authors":"Maryam Rezakhani Taleghani, F. Ghasemi, F. Tabandeh","doi":"10.5812/zjrms.109808","DOIUrl":null,"url":null,"abstract":"Background: Codon optimization is an efficient approach to achieve a higher level of heterologous gene expression and generate productive recombinant mammalian cell lines. In our previous work, based on the codon usage preference of Chinese hamster ovary (CHO) cells, a codon-optimized human interferon-beta (opt-hIFN-β) gene was redesigned and transiently expressed in a suspension-adapted CHO (CHO-s) cell line. Our results indicated a 2.8-fold increase in the expression level of the codon-optimized gene compared to the unmodified sequence. Objectives: In the current work, based on our previous results, a stable CHO-K1 cell line expressing the opt-hIFN-β gene was engineered, in which the opt-hIFN-β gene expression was confirmed by dot and western blotting analyses. Methods: The designed opt-hIFN-β sequence was digested and cloned into a pcDNA3.0 shuttle vector downstream to the cytomegalovirus (CMV) promoter. The verified recombinant plasmid was then linearized and transfected into a CHO-K1 cell line to integrate the opt-hIFN-β gene into the CHO-K1 genome. The transfected cells were then grown under the selective pressure of 450 µg/mL of G418 to develop a stable CHO-K1 cell line expressing the opt-hIFN-β gene. The enzyme-linked immunosorbent assay (ELISA) and dot and western blotting analyses were carried out to verify hIFN-β protein expression. Results: ELISA and dot and western blotting analyses confirmed the expression of hIFN-β in the stably-transfected CHO-K1 cells. Conclusions: Stable expression of the opt-hIFN-β gene in the CHO-K1 cell line was verified by ELISA and dot and western blotting analyses. This study was a pioneering work for further production of recombinant hIFN-β in the bioreactor.","PeriodicalId":292747,"journal":{"name":"Zahedan Journal of Research in Medical Sciences","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Establishment of Stable Chinese Hamster Ovary Cells Expressing Codon-Optimized Human Interferon-β Gene\",\"authors\":\"Maryam Rezakhani Taleghani, F. Ghasemi, F. Tabandeh\",\"doi\":\"10.5812/zjrms.109808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Codon optimization is an efficient approach to achieve a higher level of heterologous gene expression and generate productive recombinant mammalian cell lines. In our previous work, based on the codon usage preference of Chinese hamster ovary (CHO) cells, a codon-optimized human interferon-beta (opt-hIFN-β) gene was redesigned and transiently expressed in a suspension-adapted CHO (CHO-s) cell line. Our results indicated a 2.8-fold increase in the expression level of the codon-optimized gene compared to the unmodified sequence. Objectives: In the current work, based on our previous results, a stable CHO-K1 cell line expressing the opt-hIFN-β gene was engineered, in which the opt-hIFN-β gene expression was confirmed by dot and western blotting analyses. Methods: The designed opt-hIFN-β sequence was digested and cloned into a pcDNA3.0 shuttle vector downstream to the cytomegalovirus (CMV) promoter. The verified recombinant plasmid was then linearized and transfected into a CHO-K1 cell line to integrate the opt-hIFN-β gene into the CHO-K1 genome. The transfected cells were then grown under the selective pressure of 450 µg/mL of G418 to develop a stable CHO-K1 cell line expressing the opt-hIFN-β gene. The enzyme-linked immunosorbent assay (ELISA) and dot and western blotting analyses were carried out to verify hIFN-β protein expression. Results: ELISA and dot and western blotting analyses confirmed the expression of hIFN-β in the stably-transfected CHO-K1 cells. Conclusions: Stable expression of the opt-hIFN-β gene in the CHO-K1 cell line was verified by ELISA and dot and western blotting analyses. This study was a pioneering work for further production of recombinant hIFN-β in the bioreactor.\",\"PeriodicalId\":292747,\"journal\":{\"name\":\"Zahedan Journal of Research in Medical Sciences\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zahedan Journal of Research in Medical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5812/zjrms.109808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zahedan Journal of Research in Medical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5812/zjrms.109808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Establishment of Stable Chinese Hamster Ovary Cells Expressing Codon-Optimized Human Interferon-β Gene
Background: Codon optimization is an efficient approach to achieve a higher level of heterologous gene expression and generate productive recombinant mammalian cell lines. In our previous work, based on the codon usage preference of Chinese hamster ovary (CHO) cells, a codon-optimized human interferon-beta (opt-hIFN-β) gene was redesigned and transiently expressed in a suspension-adapted CHO (CHO-s) cell line. Our results indicated a 2.8-fold increase in the expression level of the codon-optimized gene compared to the unmodified sequence. Objectives: In the current work, based on our previous results, a stable CHO-K1 cell line expressing the opt-hIFN-β gene was engineered, in which the opt-hIFN-β gene expression was confirmed by dot and western blotting analyses. Methods: The designed opt-hIFN-β sequence was digested and cloned into a pcDNA3.0 shuttle vector downstream to the cytomegalovirus (CMV) promoter. The verified recombinant plasmid was then linearized and transfected into a CHO-K1 cell line to integrate the opt-hIFN-β gene into the CHO-K1 genome. The transfected cells were then grown under the selective pressure of 450 µg/mL of G418 to develop a stable CHO-K1 cell line expressing the opt-hIFN-β gene. The enzyme-linked immunosorbent assay (ELISA) and dot and western blotting analyses were carried out to verify hIFN-β protein expression. Results: ELISA and dot and western blotting analyses confirmed the expression of hIFN-β in the stably-transfected CHO-K1 cells. Conclusions: Stable expression of the opt-hIFN-β gene in the CHO-K1 cell line was verified by ELISA and dot and western blotting analyses. This study was a pioneering work for further production of recombinant hIFN-β in the bioreactor.