基于黑匣子计算机视觉模型语言总结的可解释人工智能

Brendan Alvey, D. Anderson, James M. Keller
{"title":"基于黑匣子计算机视觉模型语言总结的可解释人工智能","authors":"Brendan Alvey, D. Anderson, James M. Keller","doi":"10.1109/CAI54212.2023.00156","DOIUrl":null,"url":null,"abstract":"There is an ever-growing demand to characterize and understand AI as it is integrated into everyday life. Linguistic summaries have been previously used to provide natural language descriptions of data and models. However, the number of possible summaries increases rapidly with the number of data attributes. To make sense of the vast number of possible linguistic statements for a system, we introduce a hierarchical approach for generating and ranking linguistic statements. Each description of the model is assigned a value based on user criteria, allowing summaries to be tailored to specific users. We provide visualizations of the generation of summaries for a popular computer vision detector on a synthetically generated dataset.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Explainable AI via Linguistic Summarization of Black Box Computer Vision Models\",\"authors\":\"Brendan Alvey, D. Anderson, James M. Keller\",\"doi\":\"10.1109/CAI54212.2023.00156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is an ever-growing demand to characterize and understand AI as it is integrated into everyday life. Linguistic summaries have been previously used to provide natural language descriptions of data and models. However, the number of possible summaries increases rapidly with the number of data attributes. To make sense of the vast number of possible linguistic statements for a system, we introduce a hierarchical approach for generating and ranking linguistic statements. Each description of the model is assigned a value based on user criteria, allowing summaries to be tailored to specific users. We provide visualizations of the generation of summaries for a popular computer vision detector on a synthetically generated dataset.\",\"PeriodicalId\":129324,\"journal\":{\"name\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Artificial Intelligence (CAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAI54212.2023.00156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着人工智能融入日常生活,人们对其特征和理解的需求不断增长。语言摘要以前被用来提供数据和模型的自然语言描述。然而,可能的摘要数量随着数据属性的数量而迅速增加。为了理解系统中大量可能的语言语句,我们引入了一种分层方法来生成和排列语言语句。模型的每个描述都根据用户标准分配了一个值,从而允许对特定用户进行摘要调整。我们提供了一个流行的计算机视觉检测器在合成生成的数据集上生成摘要的可视化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explainable AI via Linguistic Summarization of Black Box Computer Vision Models
There is an ever-growing demand to characterize and understand AI as it is integrated into everyday life. Linguistic summaries have been previously used to provide natural language descriptions of data and models. However, the number of possible summaries increases rapidly with the number of data attributes. To make sense of the vast number of possible linguistic statements for a system, we introduce a hierarchical approach for generating and ranking linguistic statements. Each description of the model is assigned a value based on user criteria, allowing summaries to be tailored to specific users. We provide visualizations of the generation of summaries for a popular computer vision detector on a synthetically generated dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信