预测牵引电力消耗的神经模型:支持电子能源远程信息处理系统

Jindřich Sadil
{"title":"预测牵引电力消耗的神经模型:支持电子能源远程信息处理系统","authors":"Jindřich Sadil","doi":"10.1145/1551722.1551744","DOIUrl":null,"url":null,"abstract":"This paper deals with determination of relevant input data for models predicting electric traction power consumption. Furthermore, it deals with developing such models, which combine knowledge of classical physics with methods of artificial neural networks. It is possible to design control processes of railway traction effectively, based on these models. Real data of electric power consumption of traction substations in the Czech Republic within one year of train diagram 2006/2007 validity are used for verification of the models. These models can build support for e-energy telematic systems.","PeriodicalId":165011,"journal":{"name":"Euro American Conference on Telematics and Information Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Neural models predicting traction power consumption: support of e-energy telematic systems\",\"authors\":\"Jindřich Sadil\",\"doi\":\"10.1145/1551722.1551744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with determination of relevant input data for models predicting electric traction power consumption. Furthermore, it deals with developing such models, which combine knowledge of classical physics with methods of artificial neural networks. It is possible to design control processes of railway traction effectively, based on these models. Real data of electric power consumption of traction substations in the Czech Republic within one year of train diagram 2006/2007 validity are used for verification of the models. These models can build support for e-energy telematic systems.\",\"PeriodicalId\":165011,\"journal\":{\"name\":\"Euro American Conference on Telematics and Information Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euro American Conference on Telematics and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1551722.1551744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euro American Conference on Telematics and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1551722.1551744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了电力牵引电耗预测模型相关输入数据的确定问题。此外,它还涉及开发这样的模型,它将经典物理知识与人工神经网络方法相结合。基于这些模型,可以有效地设计铁路牵引控制过程。采用捷克共和国2006/2007年有效运行图一年内牵引变电所的实际用电量数据对模型进行验证。这些模型可以为电子能源远程信息处理系统提供支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural models predicting traction power consumption: support of e-energy telematic systems
This paper deals with determination of relevant input data for models predicting electric traction power consumption. Furthermore, it deals with developing such models, which combine knowledge of classical physics with methods of artificial neural networks. It is possible to design control processes of railway traction effectively, based on these models. Real data of electric power consumption of traction substations in the Czech Republic within one year of train diagram 2006/2007 validity are used for verification of the models. These models can build support for e-energy telematic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信