RoverNet:基于视觉的自适应人机对象切换

Matija Mavsar, A. Ude
{"title":"RoverNet:基于视觉的自适应人机对象切换","authors":"Matija Mavsar, A. Ude","doi":"10.1109/Humanoids53995.2022.10000200","DOIUrl":null,"url":null,"abstract":"Enabling dynamic human-to-robot handovers is a challenging task, requiring a combination of human pose estimation, motion prediction and generation of a suitable receiving robot trajectory. In this paper, we present a method, capable of predicting human motion during a handover process by utilizing a state-of-the-art pose estimation framework, a single RGB-D camera and a recurrent neural network. Additionally, we propose a method for humanoid robot control that adapts the corresponding receiving trajectory in real time. We evaluate the network for handover position prediction and show that it can accurately predict the goal location of the human hand during a handover. We also implement an adaptive humanoid robot control system that can facilitate a dynamic handover procedure.","PeriodicalId":180816,"journal":{"name":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RoverNet: Vision-Based Adaptive Human-to-Robot Object Handovers\",\"authors\":\"Matija Mavsar, A. Ude\",\"doi\":\"10.1109/Humanoids53995.2022.10000200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enabling dynamic human-to-robot handovers is a challenging task, requiring a combination of human pose estimation, motion prediction and generation of a suitable receiving robot trajectory. In this paper, we present a method, capable of predicting human motion during a handover process by utilizing a state-of-the-art pose estimation framework, a single RGB-D camera and a recurrent neural network. Additionally, we propose a method for humanoid robot control that adapts the corresponding receiving trajectory in real time. We evaluate the network for handover position prediction and show that it can accurately predict the goal location of the human hand during a handover. We also implement an adaptive humanoid robot control system that can facilitate a dynamic handover procedure.\",\"PeriodicalId\":180816,\"journal\":{\"name\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Humanoids53995.2022.10000200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Humanoids53995.2022.10000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

实现动态人机切换是一项具有挑战性的任务,需要结合人体姿势估计,运动预测和生成合适的接收机器人轨迹。在本文中,我们提出了一种方法,能够通过利用最先进的姿态估计框架,单个RGB-D相机和递归神经网络来预测切换过程中的人体运动。此外,我们还提出了一种实时适应相应接收轨迹的仿人机器人控制方法。我们对该网络的切换位置预测进行了评估,结果表明该网络可以准确地预测切换过程中人手的目标位置。我们还实现了一个自适应的仿人机器人控制系统,该系统可以促进动态切换过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RoverNet: Vision-Based Adaptive Human-to-Robot Object Handovers
Enabling dynamic human-to-robot handovers is a challenging task, requiring a combination of human pose estimation, motion prediction and generation of a suitable receiving robot trajectory. In this paper, we present a method, capable of predicting human motion during a handover process by utilizing a state-of-the-art pose estimation framework, a single RGB-D camera and a recurrent neural network. Additionally, we propose a method for humanoid robot control that adapts the corresponding receiving trajectory in real time. We evaluate the network for handover position prediction and show that it can accurately predict the goal location of the human hand during a handover. We also implement an adaptive humanoid robot control system that can facilitate a dynamic handover procedure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信