基于机器学习的智能合约动态漏洞检测

Mojtaba Eshghie, Cyrille Artho, D. Gurov
{"title":"基于机器学习的智能合约动态漏洞检测","authors":"Mojtaba Eshghie, Cyrille Artho, D. Gurov","doi":"10.1145/3463274.3463348","DOIUrl":null,"url":null,"abstract":"In this work we propose Dynamit, a monitoring framework to detect reentrancy vulnerabilities in Ethereum smart contracts. The novelty of our framework is that it relies only on transaction metadata and balance data from the blockchain system; our approach requires no domain knowledge, code instrumentation, or special execution environment. Dynamit extracts features from transaction data and uses a machine learning model to classify transactions as benign or harmful. Therefore, not only can we find the contracts that are vulnerable to reentrancy attacks, but we also get an execution trace that reproduces the attack. Using a random forest classifier, our model achieved more than 90 percent accuracy on 105 transactions, showing the potential of our technique.","PeriodicalId":328024,"journal":{"name":"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Dynamic Vulnerability Detection on Smart Contracts Using Machine Learning\",\"authors\":\"Mojtaba Eshghie, Cyrille Artho, D. Gurov\",\"doi\":\"10.1145/3463274.3463348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we propose Dynamit, a monitoring framework to detect reentrancy vulnerabilities in Ethereum smart contracts. The novelty of our framework is that it relies only on transaction metadata and balance data from the blockchain system; our approach requires no domain knowledge, code instrumentation, or special execution environment. Dynamit extracts features from transaction data and uses a machine learning model to classify transactions as benign or harmful. Therefore, not only can we find the contracts that are vulnerable to reentrancy attacks, but we also get an execution trace that reproduces the attack. Using a random forest classifier, our model achieved more than 90 percent accuracy on 105 transactions, showing the potential of our technique.\",\"PeriodicalId\":328024,\"journal\":{\"name\":\"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3463274.3463348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3463274.3463348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

在这项工作中,我们提出了Dynamit,这是一个监测框架,用于检测以太坊智能合约中的可重入漏洞。我们框架的新颖之处在于,它只依赖于区块链系统的交易元数据和余额数据;我们的方法不需要领域知识、代码工具或特殊的执行环境。Dynamit从交易数据中提取特征,并使用机器学习模型将交易分类为良性或有害。因此,我们不仅可以找到易受重入攻击的合约,还可以获得再现攻击的执行跟踪。使用随机森林分类器,我们的模型在105个事务上实现了90%以上的准确率,显示了我们技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Vulnerability Detection on Smart Contracts Using Machine Learning
In this work we propose Dynamit, a monitoring framework to detect reentrancy vulnerabilities in Ethereum smart contracts. The novelty of our framework is that it relies only on transaction metadata and balance data from the blockchain system; our approach requires no domain knowledge, code instrumentation, or special execution environment. Dynamit extracts features from transaction data and uses a machine learning model to classify transactions as benign or harmful. Therefore, not only can we find the contracts that are vulnerable to reentrancy attacks, but we also get an execution trace that reproduces the attack. Using a random forest classifier, our model achieved more than 90 percent accuracy on 105 transactions, showing the potential of our technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信