{"title":"模拟固体和液体基片上马兰戈尼流对莱顿弗罗斯特态的影响","authors":"A. Shahriari, Palash V. Acharya, V. Bahadur","doi":"10.1115/ICNMM2018-7720","DOIUrl":null,"url":null,"abstract":"Boiling heat transfer affects various processes related to energy, water and manufacturing. In the film boiling regime, heat transfer is substantially lower than in the nucleate boiling regime, due to the formation of a vapor layer at the solid-liquid interface (Leidenfrost effect). In this work, we present analytical modeling of the Leidenfrost state of droplets on solid and liquid substrates. A key aspect of this study is the focus on surface tension gradients on the surface of a liquid (Leidenfrost droplet or liquid substrate), which actuate thermo-capillary driven Marangoni flows. It is noted that this work develops a first-order simplified model, which assumes a uniform vapor layer thickness. The presence of Marangoni flows has non-trivial implications on the resulting thickness of the Leidenfrost vapor layer. Our analysis shows that the pumping effect generated in the vapor layer due to Marangoni flows can significantly reduce the Leidenfrost vapor layer thickness.","PeriodicalId":137208,"journal":{"name":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling the Influence of Marangoni Flows on the Leidenfrost State on Solid and Liquid Substrates\",\"authors\":\"A. Shahriari, Palash V. Acharya, V. Bahadur\",\"doi\":\"10.1115/ICNMM2018-7720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boiling heat transfer affects various processes related to energy, water and manufacturing. In the film boiling regime, heat transfer is substantially lower than in the nucleate boiling regime, due to the formation of a vapor layer at the solid-liquid interface (Leidenfrost effect). In this work, we present analytical modeling of the Leidenfrost state of droplets on solid and liquid substrates. A key aspect of this study is the focus on surface tension gradients on the surface of a liquid (Leidenfrost droplet or liquid substrate), which actuate thermo-capillary driven Marangoni flows. It is noted that this work develops a first-order simplified model, which assumes a uniform vapor layer thickness. The presence of Marangoni flows has non-trivial implications on the resulting thickness of the Leidenfrost vapor layer. Our analysis shows that the pumping effect generated in the vapor layer due to Marangoni flows can significantly reduce the Leidenfrost vapor layer thickness.\",\"PeriodicalId\":137208,\"journal\":{\"name\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ICNMM2018-7720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ICNMM2018-7720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling the Influence of Marangoni Flows on the Leidenfrost State on Solid and Liquid Substrates
Boiling heat transfer affects various processes related to energy, water and manufacturing. In the film boiling regime, heat transfer is substantially lower than in the nucleate boiling regime, due to the formation of a vapor layer at the solid-liquid interface (Leidenfrost effect). In this work, we present analytical modeling of the Leidenfrost state of droplets on solid and liquid substrates. A key aspect of this study is the focus on surface tension gradients on the surface of a liquid (Leidenfrost droplet or liquid substrate), which actuate thermo-capillary driven Marangoni flows. It is noted that this work develops a first-order simplified model, which assumes a uniform vapor layer thickness. The presence of Marangoni flows has non-trivial implications on the resulting thickness of the Leidenfrost vapor layer. Our analysis shows that the pumping effect generated in the vapor layer due to Marangoni flows can significantly reduce the Leidenfrost vapor layer thickness.