利用遗传规划和图模式树表示从正、负数据中获取保留特征块的外平面图模式

Yuto Ouchiyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama, Fumiya Tokuhara
{"title":"利用遗传规划和图模式树表示从正、负数据中获取保留特征块的外平面图模式","authors":"Yuto Ouchiyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama, Fumiya Tokuhara","doi":"10.1109/IWCIA.2015.7449469","DOIUrl":null,"url":null,"abstract":"Machine learning and data mining from graph structured data have been studied intensively. Many chemical compounds can be expressed by outerplanar graphs. We use block preserving outerplanar graph patterns having structured variables for expressing structural features of outerplanar graphs. We propose a learning method for acquiring characteristic block preserving outerplanar graph patterns from positive and negative outerplanar graph data, by using Genetic Programming and tree representation of block preserving outerplanar graph patterns. We report experimental results on applying our method to synthetic outerplanar graph data.","PeriodicalId":298756,"journal":{"name":"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Acquisition of characteristic block preserving outerplanar graph patterns from positive and negative data using Genetic Programming and tree representation of graph patterns\",\"authors\":\"Yuto Ouchiyama, T. Miyahara, Yusuke Suzuki, Tomoyuki Uchida, T. Kuboyama, Fumiya Tokuhara\",\"doi\":\"10.1109/IWCIA.2015.7449469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning and data mining from graph structured data have been studied intensively. Many chemical compounds can be expressed by outerplanar graphs. We use block preserving outerplanar graph patterns having structured variables for expressing structural features of outerplanar graphs. We propose a learning method for acquiring characteristic block preserving outerplanar graph patterns from positive and negative outerplanar graph data, by using Genetic Programming and tree representation of block preserving outerplanar graph patterns. We report experimental results on applying our method to synthetic outerplanar graph data.\",\"PeriodicalId\":298756,\"journal\":{\"name\":\"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2015.7449469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2015.7449469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

机器学习和从图结构数据中挖掘数据得到了深入的研究。许多化合物可以用外平面图表示。我们使用具有结构化变量的块保留外平面图模式来表达外平面图的结构特征。提出了一种利用遗传规划和块保持外平面图模式树形表示从正、负外平面图数据中获取特征块保持外平面图模式的学习方法。我们报告了应用该方法合成外平面图数据的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acquisition of characteristic block preserving outerplanar graph patterns from positive and negative data using Genetic Programming and tree representation of graph patterns
Machine learning and data mining from graph structured data have been studied intensively. Many chemical compounds can be expressed by outerplanar graphs. We use block preserving outerplanar graph patterns having structured variables for expressing structural features of outerplanar graphs. We propose a learning method for acquiring characteristic block preserving outerplanar graph patterns from positive and negative outerplanar graph data, by using Genetic Programming and tree representation of block preserving outerplanar graph patterns. We report experimental results on applying our method to synthetic outerplanar graph data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信